精英家教网 > 高中数学 > 题目详情
以椭圆内的点为中点的弦所在直线方程     (   )
A.B.C.D.
D
解:由题意可得直线的斜率存在,设直线方程为 y-1="k" ( x-1),
代入椭圆化简可得
=1,
(4k2+1)x2+8(k-k2 ) x+4k2-8k-12.
∴由题意可得 x1+x2==2,∴k=-
故 直线方程为  y-1=-( x-1),即 x+4y-5=0,
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点,则椭圆方程是         (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆)的右焦点为,离心率为.
(Ⅰ)若,求椭圆的方程;
(Ⅱ)设直线与椭圆相交于两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆,直线,F为椭圆的右焦点,M为椭圆上任意一点,记M到直线L的距离为d.

(Ⅰ) 求证:为定值;
(Ⅱ) 设过右焦点F的直线m的倾斜角为,m交椭圆于A、B两点,且,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆G:的两个焦点为是椭圆上一点,且满
(1)求离心率的取值范围;
(2)当离心率取得最小值时,点到椭圆上点的最远距离为
①求此时椭圆G的方程;
②设斜率为的直线与椭圆G相交于不同两点的中点,问:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左,右焦点为,(1,)为椭圆上一点,椭圆的
长半轴长等于焦距,曲线C是以坐标原点为顶点,以为焦点的抛物线,自引直线交曲线C于P,Q两个不同的交点,点P关于轴的对称点记为M,设
(1)求椭圆方程和抛物线方程;
(2)证明:
(3)若求|PQ|的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆上的点到一条准线距离的最小值恰好等于该椭圆半焦距,则此椭圆的离心率是  ▲   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点为,若椭圆上存在点,满足以椭圆短轴为直径的圆与线段相切于线段的中点,则该椭圆的离心率
A.B.C.D.

查看答案和解析>>

同步练习册答案