精英家教网 > 高中数学 > 题目详情
如图,已知圆G:x2+y2-2x-
2
y=0
经过椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(ma)且倾斜角为
5
6
π
的直线l交椭圆于C,D两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若
FC
FD
<0
,求m的取值范围.
分析:(I)对于圆G:x2+y2-2x-
2
y=0
经过点F,B,分别令y=0,x=0,即可解得F(2,0),B(0,
2
),可得c=2,b=
2
.再利用a2=b2+c2即可得到a.
(II)由题意得直线l的方程为y=-
3
3
(x-m)(m>
6
)
.与椭圆方程联立即可得到根与系数的关系,再利用数量积即可得出.
解答:解:(1)∵圆G:x2+y2-2x-
2
y=0
经过点F,B,分别令y=0,x=0,
解得F(2,0),B(0,
2
),
∴c=2,b=
2

∴a2=b2+c2=6.
故椭圆的方程为
x2
6
+
y2
2
=1

(2)由题意得直线l的方程为y=-
3
3
(x-m)(m>
6
)

x2
6
+
y2
2
=1
y=-
3
3
(x-m)
消去y得2x2-2mx+m2-6=0,
由△=4m2-8(m2-6)>0解得-2
3
<m<2
3

m>
6
,∴
6
<m<2
3

设C(x1,y1),D(x2,y2),则x1+x2=m,x1x2=
m2-6
2

y1y2=(-
3
3
)2(x1-m)(x2-m)
=
1
3
[x1x2-m(x1+x2)+m2]

FC
=(x1-2,y1)
FD
=(x2-2,y2)

FC
FD
=(x1-2)(x2-2)+y1y2=
4
3
x1x2
-
m+6
3
(x1+x2)
+
m2
3
+4
=
2m(m-3)
3

FC
FD
<0
,∴
2m(m-3)
3
<0

解得0<m<3,又
6
<m<2
3

6
<m<3
点评:本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、数量积运算、一元二次不等式的解法等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知圆G:x2+y2-2x-
2
y=0,经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F及上顶点B,过圆外一点(m,0)(m>a)倾斜角为
6
的直线l交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆G:x2+y2-2x-
2
y=0经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F及上顶点B.过点M(m,0)作倾斜角为
5
6
π
的直线l交椭圆于C、D两点.
(1)求椭圆的方程;
(2)若点Q(1,0)恰在以线段CD为直径的圆的内部,求实数m范围.

查看答案和解析>>

科目:高中数学 来源:湖南省模拟题 题型:解答题

如图,已知圆G:x2+y2-2x-y=0经过椭圆(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(m>a)且倾斜角为的直线l交椭圆于C,D两点,
(Ⅰ)求椭圆的方程;
(Ⅱ)若∠CFD∈,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆G:x2+y2﹣2x﹣y=0经过椭圆的右焦点F及上顶点B.过点M(m,0)作倾斜角为的直线l交椭圆于C、D两点.

(1)求椭圆的方程;

(2)若点Q(1,0)恰在以线段CD为直径的圆的内部,求实数m范围.

查看答案和解析>>

同步练习册答案