精英家教网 > 高中数学 > 题目详情

【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.

【答案】(Ⅰ) (Ⅱ)见证明

【解析】

(Ⅰ)根据已知得到关于a,b,c的方程组,解方程组即得椭圆的标准方程;(Ⅱ)先考虑直线l的斜率不存在的情况,再考虑斜率存在的情况,直线l的方程与椭圆的标准方程联立得到韦达定理,再求出,化简即得其为定值.

(Ⅰ)将代入中,由可得

所以弦长为

故有,解得

所以椭圆的方程为:

(Ⅱ)若直线l的斜率不存在,即直线的方程为x=2,与椭圆只有一个交点,不符合题意。

设直线l的斜率为k,若k=0,直线l与椭圆只有一个交点,不符合题意,故k≠0.

所以直线l的方程为,即, 直线l的方程与椭圆的标准方程联立得:

消去y得:,

,则

,

代入上式,得

,命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点在以为焦点的双曲线上,过轴的垂线,垂足为,若四边形为菱形,则该双曲线的离心率为( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①对于独立性检验,的值越大,说明两事件相关程度越大,②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是,③某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则高一学生被抽到的概率最大,④通过回归直线= +及回归系数,可以精确反映变量的取值和变化趋势,其中正确的个数是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的角所对的边份别为,且

1求角的大小;

2,求的周长的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校办工厂请了30名木工制作200把椅子和100张课桌.已知制作一张课桌与制作一把椅子的工时数之比为10:7,问30名工人如何分组(一组制作课桌,另一组制作椅子)能使任务完成最快?请利用二分法的知识解答.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

1)若A是空集,求的取值范围;

2)若A中只有一个元素,求的值,并求集合A

3)若A中至多有一个元素,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱锥中,平面平面是边长为4,的正三角形,是顶角 的等腰三角形,点上的一动点.

(1)当时,求证:

(2)当直线与平面所成角为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)是否存在实数,使得函数的极值大于?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy椭圆的离心率为,椭圆上动点到一个焦点的距离的最小值为

(1)求椭圆C的标准方程;

(2)已知过点的动直线l与椭圆C交于 AB 两点,试判断以AB为直径的圆是否恒过定点,并说明理由.

查看答案和解析>>

同步练习册答案