精英家教网 > 高中数学 > 题目详情
17.设函数f(t)=t+$\frac{1}{t}$,则
(1)f(t)=t+$\frac{1}{t}$在[$\frac{1}{3}$,1]内的最大值和最小值分别是多少?
(2)f(t)=t+$\frac{1}{t}$在[$\frac{1}{3}$,4]内的最大值和最小值分别是多少?

分析 (1)求导f′(t)=1-$\frac{1}{{t}^{2}}$,从而确定函数的单调性,从而求最值.
(2)由(1)知,f(t)在[$\frac{1}{3}$,1]上是减函数,在[1,4]上是增函数,从而求最值.

解答 解:(1)∵f(t)=t+$\frac{1}{t}$,
∴f′(t)=1-$\frac{1}{{t}^{2}}$,
∴当t∈[$\frac{1}{3}$,1时,f′(t)≤0,
故f(t)在[$\frac{1}{3}$,1]上是减函数,
故fmax(t)=f($\frac{1}{3}$)=3+$\frac{1}{3}$=$\frac{10}{3}$,fmin(t)=f(1)=1+1=2;
(2)由(1)知,
f(t)在[$\frac{1}{3}$,1]上是减函数,在[1,4]上是增函数,
且f(1)=2,f($\frac{1}{3}$)=$\frac{10}{3}$,f(4)=4+$\frac{1}{4}$=$\frac{17}{4}$;
故f(t)=t+$\frac{1}{t}$在[$\frac{1}{3}$,4]内的最大值为$\frac{17}{4}$,最小值为2.

点评 本题考查了导数的综合应用及函数的最值的求法应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知正四棱锥S-ABCD的底面边长为a,侧棱长为2a,点P,Q分别在BD和SC上,并且BP:PD=1:3,PQ∥平面SAD,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}中.a1=$\frac{1}{3}$,an+1=$\frac{n+1}{3n}{a}_{n}$.
(1)证明数列{$\frac{{a}_{n}}{n}$}是等比数列;
(2)求数列{an}前n项的和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=|1-$\frac{1}{x}$|(x>0).
(1)求f(x)的单调区间;
(2)是否存在正实数a,b(a<b),使函数f(x)的定义域为[a,b]时值域为[$\frac{a}{6}$,$\frac{b}{6}$]?若存在,求a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}中,a5=16,a2,a7分别是方程x2+mx+128=0的两根.
(1)求m的值以及数列{an}的前n项和Sn的表达式;
(2)若数列{bn}满足b1=1,2${\;}^{{b}_{n}}$=2${\;}^{{b}_{n-1}}$•an n≥2,求数列{an+bn-$\frac{1}{2}$n2}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知α∈($\frac{3}{2}$π,2π),sinα=-$\frac{15}{17}$,求角α的其他三角函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,若C=2B,则$\frac{b}{c}$的取值范围是(  )
A.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$)B.($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$)C.($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{3}$)D.($\sqrt{3}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(x+φ)cosx的图象关于原点O(0,0)对称,试求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)可导,则$\lim_{△x→0}$$\frac{f(1+△x)-f(1)}{3△x}$等于(  )
A.f′(1)B.不存在C.$\frac{1}{3}$f′(1)D.以上都不对

查看答案和解析>>

同步练习册答案