精英家教网 > 高中数学 > 题目详情

设函数y=f(x)的定义域为D,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么称函数x=g(t)是函数y=f(x)的一个等值域变换.
有下列说法:
①若f(x)=2x+b,x∈R,x=t2-2t+3,t∈R,则x=g(t)不是f(x)的一个等值域变换;
②f(x)=|x|(x∈R),数学公式,则x=g(t)是f(x)的一个等值域变换;
③若f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R,则x=g(t)是f(x)的一个等值域变换;
④设f(x)=log2x(x>0),若x=g(t)=5t+5-t+m是y=f(x)的一个等值域变换,且函数f(g(t))的定义域为R,则m的取值范围是m≤-2.
在上述说法中,正确说法的个数为


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
B
分析:已知等值域变换的定义,分别求出f(x)和g(x)的值域和定义域,对①②③④进行一一验证,从而求解;
解答:①函数f(x)=2x+b,x∈R的值域为R,
∵x=t2-2t+3=(t-1)2+2≥2,
∴y=f(g(t))=2[(t-1)2+2]+b≥4+b,值域不一样,
所以,x=g(t)不是f(x)的一个等值域变换,故①错误;
②可得f(x)=|x|≥0,值域大于等于0,

∴y=f(g(t))=||=>0,值域大于0,
所以,x=g(t)不是f(x)的一个等值域变换,故②错误;
③若f(x)=x2-x+1=(x-2+
∵x=g(t)=2t
∴y=f(g(t))=(2t-2+
∴x=g(t)是f(x)的一个等值域变换,故③正确;
④f(x)=log2x(x>0),值域为R,
∵x=g(t)=5t+5-t+m是y=f(x)的一个等值域变换,
∴函数f(g(t))的定义域为R,值域也为R,
∴f(g(t))=log2(5t+5-t+m)的值域为R,可得5t+5-t+m≤0即可,所以m≤-(5t+5-t)≤-2,在R上恒成立,
∴m≤-2,故④正确,
故选B;
点评:考查新定义,解题的关键的是能够读懂新定义,利用了整体代换的思想,是一道综合题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),f(
13
)=1
,且当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为全体R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0),且f(an+1)=
1
f(
-an
2an+1
)
(n∈N*
(Ⅰ)求证:y=f(x)是R上的减函数;          
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若不等式
k
(1+a1)(1+a2)…(1+an)
-
1
2n+1
≤0
对一切n∈N*均成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为R+,若对于给定的正数k,定义函数:fk(x)=
k,f(x)≤k
f(x),f(x)>k
,则当函数f(x)=
1
x
,k=1
时,函数fk(x)的图象与直线x=
1
4
,x=2,y=0围成的图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•闵行区一模)(文)设函数y=f(x)的反函数是y=f-1(x),且函数y=f(x)过点P(2,-1),则f-1(-1)=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区二模)设函数y=f(x)的定义域为R,对任意实数x,y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.
(1)求证:y=f(x)为奇函数;
(2)在区间[-9,9]上,求y=f(x)的最值.

查看答案和解析>>

同步练习册答案