精英家教网 > 高中数学 > 题目详情
12.化简($\frac{25}{4}$)${\;}^{-\frac{3}{2}}$=$\frac{8}{125}$.

分析 根据有理数指数幂的化简即可.

解答 解:($\frac{25}{4}$)${\;}^{-\frac{3}{2}}$=($\frac{5}{2}$)${\;}^{2×(-\frac{3}{2})}$=$(\frac{5}{2})^{-3}$=$\frac{8}{125}$,
故答案为:$\frac{8}{125}$.

点评 本题考查了有理数指数幂的化简,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{m}$+y2=1和双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1有共同的焦点F1、F2,点P是它们的一个公共点,则△PF1F2的面积是(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知a,b,c均为正数,证明:a2+b2+c2+($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)2≥6$\sqrt{3}$,并确定a,b,c为何值时,等号成立.
(2)已知a,b,c均为正实数,且a+b+c=1.求$\sqrt{4a+1}$+$\sqrt{4b+1}$+$\sqrt{4c+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.作出下列函数的图象.
(1)y=|x2-2x|+1;
(2)y=$\frac{2-x}{x-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=excosx,记f1(x)=f′(x),f2(x)=f′1(x)),f3(x)=f′2(x)),…,则fn+1(x)=f′n(x)(n∈N+),则f2015(x)等于(  )
A.21007exsinxB.-21008excosx
C.21006ex(sinx-cosx)D.21007ex(sinx+cosx)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和为Sn,且满足4Sn=(an+1)2.设bn=a${\;}_{{2}^{n-1}}$,Tn=b1+b2+…+bn(n∈N*),则Tn=-2-n+2n+1,当Tn>2015时,n的最小值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=$\frac{2}{x}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,给定两个平面向量$\overrightarrow{{O}{A}}$和$\overrightarrow{{O}{B}}$,它们的夹角为120°,点C在以O为圆心的圆弧AB上,且$\overrightarrow{{O}C}=x\overrightarrow{{O}{A}}+y\overrightarrow{{O}{B}}$(其中x,y∈R),则满足y-x≥$\frac{{\sqrt{3}}}{3}$的概率为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知3a×3b=3,a>0,b>0,求$\frac{1}{a}$+$\frac{1}{b}$的值.

查看答案和解析>>

同步练习册答案