精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=|2x+1|2|xm|mN,且fx)<3恒成立.

1)求m的值;

2)当时,fa+fb)=﹣2,证明:.

【答案】1m02)证明见解析

【解析】

1)利用绝对值不等式的性质,得到|2x+1||2x2m|≤|2m+1|,结合mN即得解.

2)将f(x)用分段函数表示,结合a,b的范围,分析函数单调性求得最小值,可分析得到ab,可得解.

1fx)=|2x+1|2|xm||2x+1||2x2m|

≤|(2x+1)-(2x2m)||2m+1|

mNfx)<3恒成立,

m0.

2)由(1)知,fx)=|2x+1||2x|.

x时,fx)单调递增,.

时,当且仅当fa)=fb)=﹣1

ab时,fa+fb)=﹣2成立,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年年底,三部进口影片登录银屏,包括《海王》,《龙猫》和《蜘蛛侠》,经过了解,电影比《蜘蛛侠》早上映一周,电影的票房比《龙猫》高,《蜘蛛侠》的票房比电影低,据此可以判断(

A.是《海王》,是《蜘蛛侠》,是《龙猫》

B.是《蜘蛛侠》,是《龙猫》,是《海王》

C.是《龙猫》,是《海王》,是《蜘蛛侠》

D.是《龙猫》,是《蜘蛛侠》,是《海王》

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1)直线l与曲线C是否有公共点?并说明理由;

2)若直线l与两坐标轴的交点为AB,点P是曲线C上的一点,求△PAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆与椭圆满足,则称这两个椭圆相似,叫相似比.若椭圆与椭圆相似且过点.

(I)求椭圆的标准方程;

(II)过点作斜率不为零的直线与椭圆交于不同两点为椭圆的右焦点,直线分别交椭圆于点,设,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别是,椭圆上短轴的一个端点与两个焦点构成的三角形的面积为

(1)求椭圆的方程;

(2)过作垂直于轴的直线交椭圆两点(点在第二象限),是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市在创建国家级卫生城(简称创卫)的过程中,相关部门需了解市民对创卫工作的满意程度,若市民满意指数不低于0.8(注:满意指数),创卫工作按原方案继续实施,否则需进一步整改.为此该部门随机调查了100位市民,根据这100位市民给创卫工作的满意程度评分,按以下区间:分为六组,得到如图频率分布直方图:

1)为了解部分市民给创卫工作评分较低的原因,该部门从评分低于60分的市民中随机选取2人进行座谈,求这2人所给的评分恰好都在的概率;

2)根据你所学的统计知识,判断该市创卫工作是否需要进一步整改,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆上三个不同的点,若坐标原点的重心,则的面积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据我市房地产数据显示,今年我市前5个月新建住宅销售均价逐月上升,为抑制房价过快上涨,政府从6月份开始推出限价房等宏观调控措施,6月份开始房价得到很好的抑制,房价回落.今年前10个月的房价均价如表:

月份x

1

2

3

4

5

6

7

8

9

10

均价y(万元/平方米)

0.83

0.95

1.00

1.05

1.17

1.15

1.10

1.06

0.98

0.94

地产数据研究发现,从1月份至5月份的各月均价y(万元/平方米)与x之间具有正线性相关关系,从6月份至10月份的各月均价y(万元/平方米)与x之间具有负线性相关关系.

1)若政府不调控,根据前5个月的数据,求y关于x的回归直线方程,并预测12月份的房地产均价.(精确到0.01

2)政府调控后,从6月份至10月份的数据可得到yx的回归直线方程为:.由此预测政府调控后12月份的房地产均价.说明政府调控的必要性.(精确到0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191216日,公安部联合阿里巴巴推出的“钱盾反诈机器人”正式上线,当普通民众接到电信网络诈骗电话,公安部钱盾反诈预警系统预警到这一信息后,钱盾反诈机器人即自动拨打潜在受害人的电话予以提醒,来电信息显示为“公安反诈专号”.某法制自媒体通过自媒体调查民众对这一信息的了解程度,从5000多参与调查者中随机抽取200个样本进行统计,得到如下数据:男性不了解这一信息的有50人,了解这一信息的有80人,女性了解这一信息的有40.

1)完成下列列联表,问:能否在犯错误的概率不超过0.01的前提下,认为200个参与调查者是否了解这一信息与性别有关?

了解

不了解

合计

男性

女性

合计

2)该自媒体对200个样本中了解这一信息的调查者按照性别分组,用分层抽样的方法抽取6人,再从这6人中随机抽取3人给予一等奖,另外3人给予二等奖,求一等奖与二等奖获得者都有女性的概率.

附:

P(K2k)

0.01

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案