精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x),当x∈[-1,1]时,f(x)=x2-x,且对任意的x满足f(x-1)=Mf(x)(常数M≠0),则函数f(x)在区间[5,7]上的最大值是(  )
分析:由题设条件,可先根据对任意的x满足f(x-1)=Mf(x)(常数M≠0)及当x∈[-1,1]时,f(x)=x2-x,解出函数f(x)在区间[5,7]上的解析式,再由所得的解析式根据二次函数的性质解出函数在区间[5,7]上的最大值即可选出正确选项
解答:解:由题意对任意的x满足f(x-1)=Mf(x)(常数M≠0),
∴任取x∈[5,7],则f(x)=
f(x-1)
M
=…=
f(x-6)
M 6

此时有x-6∈[-1,1],又定义在R上的函数f(x),当x∈[-1,1]时,f(x)=x2-x,
∴f(x)=
f(x-6)
M 6
=
(x-6) 2-(x-6)
M 6
=
x 2-13x+42
M 6
=
(x-
13
2
) 2-
1
4
M 6

当x=5时,函数f(x)在区间[5,7]上取到最大值是
2
M6

故选D
点评:本题考查二次函数的最值及函数恒成立的关系,解题的关键是由题设条件解出要求最值的区间上的函数解析式,从而研究函数的最值,本题考查了转化的思想及最值的求法,二次函数的最值常用配方法求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案