精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,经过点(0,
2
)
且斜率为k的直线l与椭圆
x2
2
+y2=1
有两个不同的交点P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量
OP
+
OQ
AB
共线?如果存在,求k值;如果不存在,请说明理由.
分析:(1)直线l与椭圆有两个不同的交点,即方程组有2个不同解,转化为判别式大于0.
(2)利用2个向量共线时,坐标之间的关系,由一元二次方程根与系数的关系求两根之和,解方程求常数k.
解答:解:(Ⅰ)由已知条件,直线l的方程为y=kx+
2

代入椭圆方程得
x2
2
+(kx+
2
)2=1

整理得(
1
2
+k2)x2+2
2
kx+1=0

直线l与椭圆有两个不同的交点P和Q,等价于①的判别式△=8k2-4(
1
2
+k2)=4k2-2>0

解得k<-
2
2
k>
2
2
.即k的取值范围为(-∞,-
2
2
)∪(
2
2
,+∞)

(Ⅱ)设P(x1,y1),Q(x2,y2),则
OP
+
OQ
=(x1+x2y1+y2)

由方程①,x1+x2=-
4
2
k
1+2k2
. ②
y1+y2=k(x1+x2)+2
2
. ③
A(
2
,0),B(0,1),
AB
=(-
2
,1)

所以
OP
+
OQ
AB
共线等价于x1+x2=-
2
(y1+y2)

将②③代入上式,解得k=
2
2

由(Ⅰ)知k<-
2
2
k>
2
2

故没有符合题意的常数k.
点评:本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案