精英家教网 > 高中数学 > 题目详情
6.已知$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,|$\overrightarrow{c}$|=4,则向量$\overrightarrow{a}$与$\overrightarrow{b}$之间的夹角$<\overrightarrow{a}$,$\overrightarrow{b}>$为(  )
A.30°B.45°C.60°D.以上都不对

分析 根据题意,构造△ABC,使$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{a}$,根据△ABC三边之长,利用余弦定理求出向量$\overrightarrow{a}$与$\overrightarrow{b}$之间的夹角即可.

解答 解:∵$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,|$\overrightarrow{c}$|=4,
∴以这三个向量首尾相连组成△ABC;
令$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{a}$,
则△ABC三边之长分别为BC=2,CA=3,AB=4;
由余弦定理,得:
cos∠BCA=$\frac{{BC}^{2}{+CA}^{2}{-AB}^{2}}{2BC•CA}$=$\frac{{2}^{2}{+3}^{2}{-4}^{2}}{2×2×3}$=-$\frac{1}{4}$,
又向量$\overrightarrow{BC}$和$\overrightarrow{CA}$是首尾相连,
∴这两个向量的夹角是180°-∠BCA,
∴cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{1}{4}$,
即向量$\overrightarrow{a}$与$\overrightarrow{b}$之间的夹角$<\overrightarrow{a}$,$\overrightarrow{b}>$不是特殊角.
故答案为:D.

点评 本题考查了用数量积表示两个向量的夹角问题,关键是把问题转化为三角形的内角求解,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知奇函数f(x)在(0,+∞)上单调递减,且满足f(2)=0,则不等式$\frac{f(x)-f(-x)}{x}<0$的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,-2)∪(0,2)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某单位招聘职工分为笔试和面试两个环节,将笔试成绩合格(满分100分,及格60分,精确到个位数)的应聘者进行统计,得到如下的频率分布表:
分组频数频率
[60,70]a0.16
(70,80]22x
(80,90]140.28
(90,100]by
合计501
(I)确定表中a,b,x,y的值(直接写出结果,不必写过程)
(Ⅱ)面试规定,笔试成绩在80分(不含80分)以上者可以进入面试环节,面试时又要分两关,首先面试官依次提出4个问题供选手回答,并规定,答对2道题就终止回答,通过第一关可以进入下一关,如果前三题均没有答对,则不再回答第四题并且不能进入下一关,假定某选手获得面试资格的概率与答对每道题的概率相等.
①求该选手答完3道题而通过第一关的概率;
②记该选手在面试第一关中的答题个数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列命题:
①过M点有且只有一条直线与直线AB,B1C1都相交;
②过M点有且只有一条直线与直线AB,B1C1都垂直;
③过M点有且只有一个平面与直线AB,B1C1都相交;
④在平面BB1C1C上存在无穷条直线与平面A1BM平行;
⑤过M点有且只有一个平面与直线AB,B1C1都平行.
其中真命题的序号是①②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知M为双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{12}$=1上一动点,作MA⊥y轴于点A,延长AM到点P,使M为AP的中点,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,a2+a6=14,S8=64,数列{bn}满足b1+2b2+3b3+…+nbn=(n-1)•2n+1,n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)设cn=$\frac{{a}_{n}}{{b}_{n}}$.记数列{cn}的前n项和为Tn,若不等式Tn<λ2-5λ对任意的n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.关于x的一元二次不等式x2+(k-1)x+4>0的解集为(-∞,+∞),则实数k的取值范围是-3<k<5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a,b∈R+,直线ax+by=5平分圆x2+y2-2x-4y+1=0的周长.则a2+b2的最小值为(  )
A.5B.$\sqrt{5}$C.25D.5$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点A(-2,4)在抛物线C:y2=2px的准线上,抛物线的焦点为F,则直线AF的斜率为-1.

查看答案和解析>>

同步练习册答案