精英家教网 > 高中数学 > 题目详情

【题目】设a,b为非零向量,|b|=2|a|,两组向量x1,x2,x3,x4和y1,y2,y3,y4均由2个a和2个b排列而成.若x1·y1+x2·y2+x3·y3+x4·y4所有可能取值中的最小值为4|a|2,则a与b的夹角为(  )

A. B. C. D. 0

【答案】B

【解析】

先设S=x1·y1+x2·y2+x3·y3+x4·y4,再讨论S中含有的的个数,若S的表达式中有0个a·b,则S=2a2+2b2,记为S1;若S的表达式中有2个a·b,则S=a2+b2+2a·b,记为S2;若S的表达式中有4个a·b,则S=4a·b,记为S3.再作差比较的大小,即得Smin=S3=4a·b.最后利用向量的数量积公式求a与b的夹角.

设S=x1·y1+x2·y2+x3·y3+x4·y4,若S的表达式中有0个a·b,则S=2a2+2b2,记为S1;若S的表达式中有2个a·b,则S=a2+b2+2a·b,记为S2;若S的表达式中有4个a·b,则S=4a·b,记为S3.

又|b|=2|a|,

所以S1-S3=2a2+2b2-4a·b=2(a-b)2>0,S1-S2=a2+b2-2a·b=(a-b)2>0,S2-S3=(a-b)2>0,所以S3<S2<S1,故Smin=S3=4a·b.a,b的夹角为θ,则Smin=4a·b=8|a|2cos θ=4|a|2,即cos θ=,又θ∈[0,π],所以θ=.

故答案为:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,直线与抛物线交于 两点.点 为抛物线上一动点,直线 分别与轴交于 .

(I)若的面积为,求点的坐标;

(II)当直线时,求线段的长;

(III)若面积相等,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的长轴长为4,焦距为2

(1)求椭圆C的方程;
(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点,过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.
①设直线PM,QM的斜率分别为k,k′,证明 为定值;
②求直线AB的斜率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图三棱柱中,侧面为菱形,

(1)证明:

(2)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1,l2.

求当m为何值时,l1,l2 (1) 平行;(2) 相交;(3) 垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线y2=4x焦点F的直线l交抛物线于A、B两点(点A在第一象限),若 =3 ,则直线l的方程为(
A.x﹣2y﹣1=0
B.2x﹣y﹣2=0
C.x﹣ y﹣1=0
D. x﹣y﹣ =0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,分别是,的中点,.

(1)证明:平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=a(x﹣2)ex+lnx+ 在(0,2)上存在两个极值点,则a的取值范围为(
A.(﹣∞,﹣
B.(﹣ )∪(1,+∞)
C.(﹣∞,﹣
D.(﹣∞,﹣ )∪(﹣﹣ ,﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺厂有铜丝5万米,铁丝9万米,准备用这两种材料编制成花篮和花盆出售,已知一只花篮需要用铜丝200米,铁丝300米;编制一只花盆需要100米,铁丝300米,设该厂用所有原来编制个花篮 个花盆.

(Ⅰ)列出满足的关系式,并画出相应的平面区域;

(Ⅱ)若出售一个花篮可获利300元,出售一个花盘可获利200元,那么怎样安排花篮与花盆的编制个数,可使得所得利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案