精英家教网 > 高中数学 > 题目详情
9.已知函数g(x)=$\frac{1}{2}$sin(2x+$\frac{2π}{3}$),将其图象向左平移$\frac{π}{4}$个单位,再向上平移$\frac{1}{2}$个单位得到函数f(x)=acos2(x+$\frac{π}{3}$)+b的图象.
(1)求实数a、b的值;
(2)设函数φ(x)=g(x)-$\sqrt{3}$f(x),求函数φ(x)的单调增区间.

分析 (1)根据平移变换的规律,即可得到实数a、b的值;
(2)根据函数φ(x)=g(x)-$\sqrt{3}$f(x)化简为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;

解答 解:(1)由函数g(x)=$\frac{1}{2}$sin(2x+$\frac{2π}{3}$),将其图象向左平移$\frac{π}{4}$个单位,
得:$\frac{1}{2}$sin(2x+$\frac{π}{2}+\frac{2π}{3}$)=$\frac{1}{2}$cos(2x+$\frac{2π}{3}$),
再向上平移$\frac{1}{2}$个单位得到:$\frac{1}{2}$cos(2x+$\frac{2π}{3}$)+$\frac{1}{2}$=$\frac{1}{2}$[cos2(x+$\frac{π}{3}$)+1]=$\frac{1}{2}$×2cos2(x+$\frac{π}{3}$)
由题意可得f(x)=acos2(x+$\frac{π}{3}$)+b=与函数y=cos2(x+$\frac{π}{3}$)相同.
∴a=1,b=0.
故得实数a、b的值分别为1和0.
(2)由函数φ(x)=g(x)-$\sqrt{3}$f(x),
即φ(x)=$\frac{1}{2}$sin(2x+$\frac{2π}{3}$)-$\sqrt{3}$cos2(x+$\frac{π}{3}$)
=$\frac{1}{2}$sin(2x+$\frac{2π}{3}$)-$\sqrt{3}[\frac{1}{2}+\frac{1}{2}cos(2x+\frac{2π}{3})]$=sin(2x+$\frac{2π}{3}$$-\frac{π}{3}$)$-\frac{\sqrt{3}}{2}$=sin(2x$+\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$
由$2kπ-\frac{π}{2}≤$2x$+\frac{π}{3}$$≤\frac{π}{2}+2kπ$,k∈Z,
可得:$-\frac{5π}{12}+kπ≤$x$≤\frac{π}{12}+kπ$,k∈Z.
故得函数φ(x)的单调递增区间为[$-\frac{5π}{12}+kπ$,$\frac{π}{12}+kπ$],k∈Z.

点评 本题主要考查了三角函数的平移变换,图象和性质的运用以及化简能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.f(x)=3tanx的最小正周期为(  )
A.B.C.πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=1,其前n项和Sn满足关系式3t•Sn-(2t+3)•Sn-1=3t(t>0,n=2,3,…)
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f($\frac{1}{{b}_{n-1}}$),n=(2,3,…),求bn
(3)求b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下面说法中不正确的命题个数为是(  )
?①命题“?x∈R,x2-x+1≤0”的否定是“$?{x_0}∈R,{x_0}^2-{x_0}+1>0$”;
?②若“p∨q”为假命题,则p,q均为假命题;
?③“mn>0”是“方程mx2+ny2=1表示椭圆”的充分不必要条件.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数f(x)是奇函数,且x≥0时,f(x)=$\frac{1}{2^x}$+a,则f(-1)=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.要使直线2x-y+5m2=0与直线x+2y-10m=0的交点到直线l:3x-4y-20=0的距离最小,实数m应取何值?这个最小距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,以Ox轴为始边,作两个角α,β,它们终边分别经过点P,Q,其中$P(\frac{1}{2},{cos^2}θ)$,Q(sin2θ,-1),θ∈R,且$sinα=\frac{4}{5}$.
(1)求cos2θ的值;
(2)求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知空间中两点A(x,2.3)和B(5,4.7)的距离为6,则实数x的值为9或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.cos23°cos37°-sin23°sin37°的值为(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

同步练习册答案