【题目】已知函数,且.
(Ⅰ)若,过原点作曲线的切线,求直线的方程;
(Ⅱ)若有个零点,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ2﹣4ρcosθ+1=0,直线l: (t为参数,0≤α<π).
(1)求曲线C的参数方程;
(2)若直线l与曲线C相切,求直线l的倾斜角及切点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品按质量分10个档次,生产最低档次的利润是8元/件;每提高一个档次,利润每件增加2元,每提高一个档次,产量减少3件,在相同时间内,最低档次的产品可生产60件.问:在相同时间内,生产第几档次的产品可获得最大利润?(最低档次为第一档次)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=CD=2,点M是线段EC的中点.
(1)求证:BM∥平面ADEF;
(2)求证:平面BDE⊥平面BEC;
(3)求平面BDM与平面ABF所成的角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD﹣A1B1C1D1中,E、F分别为棱DD1和BC中点G为棱A1B1上任意一点,则直线AE与直线FG所成的角为( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在钝角△ABC中,∠A为钝角,令,若.现给出下面结论:
①当时,点D是△ABC的重心;
②记△ABD,△ACD的面积分别为,,当时,;
③若点D在△ABC内部(不含边界),则的取值范围是;
④若点D在线段BC上(不在端点),则
⑤若,其中点E在直线BC上,则当时,.
其中正确的有(写出所有正确结论的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=xln(x﹣1)﹣a(x﹣2).
(Ⅰ)若a=2017,求曲线f(x)在x=2处的切线方程;
(Ⅱ)若当x≥2时,f(x)≥0,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD, .
(1)求多面体ABCDS的体积;
(2)求二面角A﹣SB﹣D的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com