精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

(1)若,证明:函数必有局部对称点;

(2)若函数在区间内有局部对称点,求实数的取值范围;

(3)若函数上有局部对称点,求实数的取值范围.

【答案】(1)见解析;(2);(3)

【解析】

试题分析:(1)利用题中所给的定义通过二次函数的判别式大于0,证明二次函数有局部对称点;(2)利用方程有解通过换元转化为打钩函数有解问题利用函数的图象确定实数c的取值范围;(3)利用方程有解通过换元转化为二次函数在给定区间有解建立不等式组通过解不等式组求得实数的取值范围.

试题解析:(1)由=,代入得,

=,得到关于的方程=).

其中,由于,所以恒成立,

所以函数=)必有局部对称点.

(2)方程=在区间上有解,于是,

),,,

其中,所以.

(3),由于,

所以=.

于是=(*)在上有解.

),则,

所以方程(*)变为=在区间内有解,

需满足条件:.

,,化简得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了20名学生的答题数据进行统计,结果如表:

(Ⅰ)根据题中数据,估计中240名学生中第5题的实测答对人数;

(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为,求的分布列和数学期望;

(Ⅲ)试题的预估难度和实测难度之间会有偏差.设为第题的实测难度,请用设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰的底边,高,点是线段上异于点的动点,点边上,且,现沿将△折起到△的位置,使,记 表示四棱锥的体积.

(1)的表达式;(2)为何值时, 取得最大,并求最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数>0, ≠1, ≠﹣1),是定义在(﹣1,1)上的奇函数.

(1)求实数的值;

(2)当=1时,判断函数在(﹣1,1)上的单调性,并给出证明;

(3)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的中心为点, 边所在的直线方程为.

1边所在的直线方程和正方形外接圆的方程;

2若动圆过点,且与正方形外接圆外切,求动圆圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为,圆心角为的扇形金属材料中剪出一个长方形,并且的平分线平行,设.

(1)试将长方形的面积表示为的函数;

2若将长方形弯曲,使重合焊接制成圆柱的侧面,当圆柱侧面积最大时,求圆柱的体积(假设圆柱有上下底面);为了节省材料,想从△中直接剪出一个圆面作为圆柱的一个底面,请问是否可行?并说明理由.

(参考公式:圆柱体积公式.其中是圆柱底面面积,是圆柱的高;等边三角形内切圆半径.其中是边长)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车是碳排放量比较大的交通工具,某地规定,从2017年开始,将对二氧化碳排放量超过130 g/km的轻型汽车进行惩罚性征税,检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:g/km):

80

110

120

140

150

100

120

x

100

160

经测算得乙品牌轻型汽车二氧化碳排放量的平均值为=120 g/km.

(1)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;

(2)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130 g/km的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点是以为底边的等腰三角形,点在直线:上.

(1)求边上的高所在直线的方程;

(2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x∈R,f(x)= ,若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,则实数k的取值范围是

查看答案和解析>>

同步练习册答案