精英家教网 > 高中数学 > 题目详情
如图,已知AC⊥平面CDE,BD//AC,△ECD为等边三角形,F为ED边的中点,CD=BD=2AC=2

(1)求证:CF∥面ABE;
(2)求证:面ABE⊥平面BDE:
(3)求三棱锥F—ABE的体积。
(1)要证明CF∥面ABE;通过平行四边形的性质得到CF∥AG得到
(2)要证明面ABE⊥平面BDE,先根据题意分析得到⊥面BDE,然后根据面面垂直的判定定理得到。
(3)

试题分析:解:(Ⅰ)证明:取BE的中点G,连FG∥,AC∥,四边形为平行四边形,故CF∥AG, 即证CF∥面ABE  3分

(Ⅱ)证明:△ECD为等边三角形,得到CF⊥ED又CF⊥BDCF⊥面BDE
而CF∥AG ,故⊥面BDE,
平面ABE,平面ABE ⊥平面BDE  7分
(Ⅲ)由CF⊥面BDE,面BDE,所以
点评:主要是考查了空间中的线面平行和面面垂直的证明,以及体积计算,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,是线段的中点.
(Ⅰ)求证:平面
(Ⅱ)求平面把长方体 分成的两部分的体积比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在三棱锥中,平面分别是的中点,交于交于点,连接

(Ⅰ)求证:
(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=,AB=2,BC=2AE=4,是等腰三角形.

(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求四棱锥P—ACDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角梯形ABCD中,AB=2DC=2AD=2,∠DAB=∠ADC =90°,将△DBC沿BD向上折起,使面ABD垂直于面BDC,则C-DAB三棱锥的外接球的体积为­________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平面平面,△为等边三角形,的中点.

(1)求证:平面
(2)求证:平面平面
(3)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,,点分别为的中点.

(1)求直线与平面所成角的正弦值;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正三棱柱中,已知在棱上,且,若与平面所成的角为,则      .

查看答案和解析>>

同步练习册答案