精英家教网 > 高中数学 > 题目详情
命题“?x∈(0,+∞),x+
4
x
≥4”的否定为(  )
A、?x∈(0,+∞),x+
4
x
≤4
B、?x∈(0,+∞),x+
4
x
<4
C、?x∈(0,+∞),x+
4
x
≤4
D、?x∈(0,+∞),x+
4
x
<4
考点:命题的否定
专题:简易逻辑
分析:直接利用全称命题的否定是特称命题写出结果即可.
解答: 解:因为全称命题的否定是特称命题,所以命题“?x∈(0,+∞),x+
4
x
≥4”的否定为:?x∈(0,+∞),x+
4
x
<4.
故选:B.
点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=f(x)(x∈D)的图象只能是下列图形中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足方程|z+
2
1+i
|=4,那么复数z在复平面内对应的点P组成的图形为(  )
A、以(1,-1)为圆心,以4为半径的圆
B、以(1,-1)为圆心,以2为半径的圆
C、以(-1,1)为圆心,以4为半径的圆
D、以(-1,1)为圆心,以2为半径的圆

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-x2
2x2-x+1
+x0的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={-1,0,1},N={x|0≤log2x≤1,x∈Z},则M∩N=(  )
A、{0,1}B、{-1,0}
C、{0}D、{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴建立极坐标系,
(Ⅰ)已知曲线C1的极坐标方程为ρ=6cosθ,将曲线C1的极坐标方程化为直角坐标方程;
(Ⅱ)若在平面直角坐标系xoy中,曲线C2的参数方程为
x=acosϕ
y=bsinϕ
(a>b>0,φ为参数).
已知曲线C2上的点M(1,
3
2
)及对应的参数ϕ=
π
3
.求曲线C2的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1体积为
9
4
,底面是边长为
3
,若P为底面ABC的中心,则PA1与平面A1B1C1所成角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂2013年、2014年某产品的生产量分别为1000件、1050件,由于技术条件的改进,该产品的年产量逐年递增.若用函数f(x)=a•bx+c(b>0,且b≠1)模拟该产品的年生产量f(x)与年份x(x∈N*)的关系,设2013年为第一年即x=1.
(1)若b=
1
2
,试求函数f(x)的解析式;
(2)若b>1,由于生产规模的限制,估计2015年该产品的生产量不会突破1200件(即生产量≤1200件),试依此估计求出a的取值范围.

查看答案和解析>>

同步练习册答案