精英家教网 > 高中数学 > 题目详情

【题目】设△ABC内角A,B,C所对的边分别为a,b,c,且
(1)若 ,求△ABC的面积;
(2)若 ,且c>b,BC边的中点为D,求AD的长.

【答案】
(1)解:∵在△ABC中

∴由正弦定理可得sinCcosB= sinBsinC,

约掉sinC可得cosB= sinB,

∴tanB= = ,B=

又∵

∴a2c=4 a,∴ac=4

∴△ABC的面积S= acsinB=


(2)解:∵

∴由余弦定理可得7=12+c2﹣2×2 × c,

解关于c的方程可得c=5,或c=1(不满足c>b,舍去)

∵BC边的中点为D,∴在△ABD中由余弦定理可得:

AD2=( 2+52﹣2× ×5× =13,

开方可得AD的长为


【解析】(1)由题意和正弦定理以及同角三角函数基本关系可得tanB,可得B值,再由正弦定理整体可得ac的值,代入三角形的面积公式计算可得;(2)由余弦定理可得c值,在△ABD中由余弦定理可得.
【考点精析】通过灵活运用正弦定理的定义,掌握正弦定理:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 判断函数的单调性并给出证明;

(2)若存在实数使函数是奇函数,求

(3)对于(2)中的,若,当时恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)把曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与曲线C交于M,N两点,点A(1,0),求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 , 抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的标准方程;
(Ⅱ)是否存在直线L满足条件:①过C2的焦点F;②与C1交与不同的两点M,N且满足 ?若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在正四棱锥中, 为侧棱的中点, 连接相交于点

(1)证明:

(2)证明:

(3)设,若质点从点沿平面与平面的表 面运动到点的最短路径恰好经过点求正四棱锥 的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为D,若存在闭区间 ,使得函数同时满足:

1内是单调函数;

2上的值域为,则称区间的“倍值区间”.

下列函数中存在“3倍值区间”的有_____.

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 上的点 关于点 的对称点为 的轨迹为 .

1)求 的轨迹方程

2)设过点 的直线 交于 两点试问是否存在直线 使以 为直径的圆经过原点?若存在,求出直线 的方程若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数.

(1)求常数的值;

(2),证明函数(1,+∞)上是减函数;

(3)若函数,且在区间[3,4]上没有零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案