精英家教网 > 高中数学 > 题目详情
11.如图,ABCD是长方形硬纸片,AB=80cm,AD=50cm,在硬纸片的四角切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸箱,设切去的小正方形的白边长为x(cm).
(1)若要求纸箱的侧面积S(cm2)最大,试问x应取何值?
(2)若要求纸箱的容积V(cm3)最大,试问x应取何值?

分析 (1)求出纸箱的侧面积S,利用基本不等式,求最大值;
(2)求出纸箱的容积V,利用导数,求最大值.

解答 解:(1)S=2x(50-2x+80-2x)=2x(130-4x)≤$\frac{1}{2}$•$(\frac{4x+130-4x}{2})^{2}$=$\frac{4225}{2}$,
当且仅当4x=130-4x,即x=$\frac{65}{4}$cm,纸箱的侧面积S(cm2)最大;
(2)V=x(50-2x)(80-2x)(0<x<12.5),
V′=(50-2x)(80-2x)-2x(80-2x)-2x(50-2x)=4(3x-100)(x-10),
∴0<x<10,V′>0,10<x<12.5,V′<0,
∴x=10cm时,V最大.

点评 (1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义.(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较.(3)相当多有关最值的实际问题用导数方法解决较简单

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.等腰直角三角形ABC中,AB=BC=2,将斜边AC绕直角边AB旋转90°后得到旋转体A-BCD,如图所示,求:
(1)若E是CD的中点,求直线AE与面BCD所成的角;
(2)求异面直线AC和BD所成的角;(3)求旋转体A-BCD的体积V1和三棱锥A-BCD的体积V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列有关命题的说法正确的有①②④⑥⑦⑧
①已知命题p:-4<x-a<4,命题q:(x-1)(x-3)<0,且q是p的充分而不必要条件,则a的取值范围是[-1,5];
②已知命题p:若$\overrightarrow{a}$=(1,2)与$\overrightarrow{b}$=(-2,λ)共线,则λ=-4,命题q:?k∈R,直线y=kx与圆x2+y2-2y=0相交,则¬p∨q是真命题;
③命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,均有x2+x+1<0”;
④命题“若x=v,则cosx=cosv”的逆否命题为真命题;
⑤命题“若am2<bm2,则a<b”的逆命题是真命题;
⑥若x,y∈R,则“x=y“是xy≥($\frac{x+y}{2}$)2成立的充要条件;
⑦对命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,则x2+x+1≥0;
⑧命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱锥A-BCD中,等边△BCD的边长为4,△ABD是以∠A为直角的等腰直角三角形,平面ABD⊥平面BCD,点M是棱BD的中点.
(1)求证:CM⊥AB:
(2)求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若对任意的x>1,函数x+xln x≥k(3x-e)(其中e是白然对数的底数,e=2.71828…),则实数k的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1的焦点到渐近线的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知矩阵A=$(\begin{array}{l}{2}&{3}\\{1}&{2}\end{array})$,矩阵B=$(\begin{array}{l}{2}&{0}&{1}\\{1}&{3}&{2}\end{array})$,C=$(\begin{array}{l}{2}\\{1}\\{-3}\end{array})$,
(1)求AB;
(2)求(AB)C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.命题“?x∈R,x2-1>0”的否定是?x∈R,x2-1≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=sinωx(其中ω>0)图象过(π,-1)点,且在区间(0,$\frac{π}{3}$)上单调递增,则ω的值为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案