精英家教网 > 高中数学 > 题目详情

【题目】某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表

分组

频数

频率

10

20

50

20

合计

100

(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;

(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).

【答案】(1)见解析;(2) 40.00(mm)

【解析】

解:(1)频率分布表如下:

分组

频数

频率


[39.95,39.97)

10

0.10

5

[39.97,39.99)

20

0.20

10

[39.99,40.01)

50

0.50

25

[40.01,40.03]

20

0.20

10

合计

100

1


注:频率分布表可不要最后一列,这里列出,只是为画频率分布直方图方便.

频率分布直方图如下:

(2)整体数据的平均值约为39.96×0.1039.98×0.2040.00×0.5040.02×0.20≈40.00(mm)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线处的切线与直线平行,求实数的值;

(Ⅱ)若函数在定义域上为增函数,求实数的取值范围;

(Ⅲ)若有两个极值点,且,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知边长为的正的顶点在平面内,顶点在平面外的同一侧,点分别为在平面内的投影,设,直线与平面所成的角为.若是以角为直角的直角三角形,则的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,近日我渔船编队在岛周围海域作业,在岛的南偏西20°方向有一个海面观测站,某时刻观测站发现有不明船只向我渔船编队靠近,现测得与相距31海里的处有一艘海警船巡航,上级指示海警船沿北偏西40°方向,以40海里/小时的速度向岛直线航行以保护我渔船编队,30分钟后到达处,此时观测站测得间的距离为21海里.

(Ⅰ)求的值;

(Ⅱ)试问海警船再向前航行多少分钟方可到岛

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,若AB=CD= ,AC=BD=2,AD=BC= ,则直线AB与CD所成角的余弦值为(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为R的函数f(x),若满足①f(0)=0;②当x∈R,且x≠0时,都有xf'(x)>0;③当x1≠x2 , 且f(x1)=f(x2)时,x1+x2<0,则称f(x)为“偏对称函数”. 现给出四个函数:g(x)= ;φ(x)=ex﹣x﹣1.
则其中是“偏对称函数”的函数个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照[0,2],(2,4],…,(14,16]分成8组,制成了如图1所示的频率分布直方图.
(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
( i)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费y(元)与月份x的散点图,其拟合的线性回归方程是 .若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ABCDCD=2,△ABC是边长为3的等边三角形.

(1)求AD

(2)求sinDAB

查看答案和解析>>

同步练习册答案