精英家教网 > 高中数学 > 题目详情

【题目】如图,多面体ABCDPE的底面ABCD是平行四边形,AD=AB=2, =0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,则二面角A﹣PB﹣E的大小为(
A.
B.
C.
D.

【答案】D
【解析】解:由 =0,PD⊥平面ABCD, 可得:PD⊥DA,PD⊥DC,AD⊥DC,
分别以DA、DC、DP所在直线为x、y、z轴建立空间直角坐标系,
∵AD=AB=2,PD=2EC=2,
∴A(2,0,0),B(2,2,0),P(0,0,2),E(0,2,1),

设平面PAB的一个法向量为 =(x,y,z),
,取z=1,得
设平面PEB的一个法向量为 =(a,b,c),
,取c=2,得
∴cos< >= =
∴二面角A﹣PB﹣E的大小为
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax3+bx2+cx+d的图象如图,则函数y=ax2+ bx+ 的单调递增区间是(

A.(﹣∞,2]
B. ,+∞)
C.[﹣2,3]
D. ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣3x2+a(6﹣a)x+c.
(1)当c=19时,解关于a的不等式f(1)>0;
(2)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影O为AC的中点,A1O=2,AB⊥BC,AB=BC= 点P在线段A1B上,且cos∠PAO= ,则直线AP与平面A1AC所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的不等式ax﹣b<0的解集是(1,+∞),则关于x的不等式(ax+b)(x﹣3)>0的解集是(
A.(﹣∞,﹣1)∪(3,+∞)
B.(1,3)
C.(﹣1,3)
D.(﹣∞,1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n,s,t∈R+ , m+n=2, + =9,其中m,n是常数,当s+t取最小值 时,m,n对应的点(m,n)是椭圆 =1的一条弦的中点,则此弦所在的直线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,左,右焦点分别是F1 , F2 , 以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上. (Ⅰ)求椭圆C的方程;
(Ⅱ)线段PQ是椭圆C过点F2的弦,且
(i)求△PF1Q的周长;
(ii)求△PF1Q内切圆面积的最大值,并求取得最大值时实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为[0,e]的函数f(x)同时满足: ①对于任意的x∈[0,e],总有f(x)≥0;
②f(e)=e;
③若x1≥0,x2≥0,x1+x2≤e,则恒有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)证明:不等式f(x)≤e对任意x∈[0,e]恒成立;
(3)若对于任意x∈[0,e],总有4f2(x)﹣4(2e﹣a)f(x)+4e2﹣4ea+1≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.若sinC+sin(B﹣A)=sin2A,则△ABC的形状为(
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形

查看答案和解析>>

同步练习册答案