精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的上顶点为A,右焦点为FO是坐标原点,是等腰直角三角形,且周长为.

1)求椭圆的方程;

2)若直线lAF垂直,且交椭圆于BC两点,求面积的最大值.

【答案】12

【解析】

1)依题意求出的值,即可求出椭圆方程;

(2)由(1)可得直线的斜率,则可设直线的方程为

联立直线与椭圆方程,利用根的判别式求出参数的范围,设,利用韦达定理及点到线的距离公式表示出及点到直线的距离,则利用导数求出面积的最值;

解:(1)在中,,则

因为是等腰直角三角形,且周长为

所以

因此椭圆的方程为.

2)由(1)知,则直线的斜率

因为直线垂直,所以可设直线的方程为

代入,得

,解得

所以.

,则.

又点到直线的距离

所以.

,则

,则.

因此上是增函数,在上是减函数,

上是增函数,在上是减函数.

因为

所以当时,取得最大值,

所以

因此面积的最大值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列,其中

(1)若满足

①当,且时,求的值;

②若存在互不相等的正整数,满足,且成等差数列,求的值

(2)设数列的前项和为,数列的前n项和为,且恒成立,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数e是自然对数的底数,)存在唯一的零点,则实数a的取值范围为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中.

1)根据散点图判断,哪一个更适宜作烧开一壶水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立关于的回归方程;

3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数).

1)求曲线的普通方程;

2)已知点,若曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于直线于点,线段的中垂线交于点.记点的轨迹为曲线.

1)求曲线的方程,并说明是什么曲线;

2)若直线与曲线交于两点,则在圆上是否存在两点,使得?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面内与两定点连线的斜率之积等于的点的轨迹,加上两点所成的曲线为.若曲线轴的正半轴的交点为,且曲线上的相异两点满足.

1)求曲线的轨迹方程;

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的图象在为自然对数的底数)处的切线方程;

2)若对任意的,均有,则称在区间上的下界函数,在区间上的上界函数.

①若,求证:上的上界函数;

②若上的下界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线E)与圆O相交于AB两点,且.过劣弧上的动点作圆O的切线交抛物线ECD两点,分别以CD为切点作抛物线E的切线,相交于点M.

1)求抛物线E的方程;

2)求点M到直线距离的最大值.

查看答案和解析>>

同步练习册答案