如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,,
.
(1)求证:;
(2)若平面与平面所成的锐二面角的大小为,求线段的长度.
(1)证明过程详见解析;(2).
解析试题分析:本题主要考查线线垂直、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由已知得,,所以利用线面平行的判定得平面,再利用线面垂直的性质,得;第二问,可以利用传统几何法求二面角的平面角,也可以利用向量法求平面和平面的法向量,利用夹角公式列出方程,通过解方程,求出线段的长度..
(1)证明:∵底面和侧面是矩形,
∴,
又∵
∴平面 3分
∵平面∴ . 6分
(2)
解法1:延长,交于,连结,
则平面平面
底面是矩形,是 的中点,,∴连结,则
又由(1)可知
又∵,
∴底面,∴∴平面 9
过作于,连结,则是平面与平面即平面与平面所成锐二面角的平面角,所以
又,∴
又易得,,从而由,求得. 12分
解法2:由(1)可知
又∵,∴底面 7分
设为的中点,以
科目:高中数学 来源: 题型:解答题
如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°.
(1)证明:平面PAB与平面PCD的交线平行于底面;
(2)求cos∠COD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥,底面为矩形,侧棱,其中,为侧棱上的两个三等分点,如下图所示.
(1)求证:;
(2)求异面直线与所成角的余弦值;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2011•山东)如图,在四棱台ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)证明:AA1⊥BD;
(2)证明:CC1∥平面A1BD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,侧面PAD底面ABCD,侧棱,底面ABCD为直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E为AD中点.
(1)求证:PE平面ABCD:
(2)求异面直线PB与CD所成角的余弦值:
(3)求平面PAB与平面PCD所成的二面角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.
(1)求证DM∥平面APC;
(2)求证平面ABC⊥平面APC;
(3)若BC=PC=4,求二面角P-AB-C的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥中,底面是平行四边形,,平面,,,是的中点.
(1)求证:平面;
(2)若以为坐标原点,射线、、分别是轴、轴、轴的正半轴,建立空间直角坐标系,已经计算得是平面的法向量,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com