【题目】已知数列满足:(常数),.数列满足:.
(1)求的值;
(2)求出数列的通项公式;
(3)问:数列的每一项能否均为整数?若能,求出k的所有可能值;若不能,请说明理由.
【答案】(1) ;(2) ; (3) k为1,2时数列是整数列.
【解析】
(1)经过计算可知:,由数列满足:(n=1,2,3,4…),从而可求;
(2)由条件可知.得,两式相减整理得,从而可求数列的通项公式;
(3)假设存在正数k,使得数列的每一项均为整数,则由(2)可知:
,由,,可求得.证明时,满足题意,说明时,数列是整数列.
(1)由已知可知:,
把数列的项代入
求得;
(2)由
可知:①
则:②
①②有:,
即:
…,…,
;
(3)假设存在正数k使得数列的每一项均为整数,
则由(2)可知:③,
由,,可知,2.
当时,为整数,利用结合③式可知的每一项均为整数;
当时,③变为④
用数学归纳法证明为偶数,为整数.
时结论显然成立,假设时结论成立,
这时为偶数,为整数,
故为偶数,为整数,
时,命题成立.
故数列是整数列.
综上所述k为1,2时数列是整数列.
科目:高中数学 来源: 题型:
【题目】对于无穷数列,,若-…,则称是的“收缩数列”.其中,,分别表示中的最大数和最小数.已知为无穷数列,其前项和为,数列是的“收缩数列”.
(1)若,求的前项和;
(2)证明:的“收缩数列”仍是;
(3)若,求所有满足该条件的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求直线的普通方程和曲线C的直角坐标方程;
(2)设点P为曲线C上的动点,点M,N为直线上的两个动点,若是以为直角的等腰三角形,求直角边长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥A-BCD中,平面ABC丄平面ADC, AD丄AC,AD=AC, ,若此三棱锥的外接球表面积为,则三棱锥A-BCD体积的最大值为( )
A.7B.12C.6D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有l000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族”,计划在明年及明年以后才购买5G手机的员工称为“观望者”调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(Ⅰ)完成下列列联表,并判断是否有的把握认为该公司员工属于“追光族”与“性别”有关;
属于“追光族” | 属于“观望者” | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(Ⅱ)已知被抽取的这l00名员工中有6名是人事部的员工,这6名中有3名属于“追光族”现从这6名中随机抽取3名,求抽取到的3名中恰有1名属于“追光族”的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com