精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足:(常数),.数列满足:.

1)求的值;

2)求出数列的通项公式;

3)问:数列的每一项能否均为整数?若能,求出k的所有可能值;若不能,请说明理由.

【答案】(1) (2) (3) k12时数列是整数列.

【解析】

1)经过计算可知:,由数列满足:n1234…),从而可求
2)由条件可知.得,两式相减整理得,从而可求数列的通项公式;
3)假设存在正数k,使得数列的每一项均为整数,则由(2)可知:
,由,可求得.证明时,满足题意,说明时,数列是整数列.

1)由已知可知:

把数列的项代入

求得

2)由

可知:

则:

②有:

即:

3)假设存在正数k使得数列的每一项均为整数,

则由(2)可知:③,

,可知2.

时,为整数,利用结合③式可知的每一项均为整数;

时,③变为

用数学归纳法证明为偶数,为整数.

时结论显然成立,假设时结论成立,

这时为偶数,为整数,

为偶数,为整数,

时,命题成立.

故数列是整数列.

综上所述k12时数列是整数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的面积为,且满足,则边的最小值为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列,若,则称收缩数列”.其中,分别表示中的最大数和最小数.已知为无穷数列,其前项和为,数列收缩数列”.

1)若,求的前项和;

2)证明:收缩数列仍是

3)若,求所有满足该条件的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是平行四边形的四棱锥中,,且,若平面,则______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,底面为矩形,分别为线段上一点,且.

(1)证明:

(2)证明:平面,并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.

1)求直线的普通方程和曲线C的直角坐标方程;

2)设点P为曲线C上的动点,点MN为直线上的两个动点,若是以为直角的等腰三角形,求直角边长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥A-BCD中,平面ABC丄平面ADC, ADAC,AD=AC, ,若此三棱锥的外接球表面积为,则三棱锥A-BCD体积的最大值为(

A.7B.12C.6D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有l000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为追光族,计划在明年及明年以后才购买5G手机的员工称为观望者调查结果发现抽取的这100名员工中属于追光族的女性员工和男性员工各有20.

(Ⅰ)完成下列列联表,并判断是否有的把握认为该公司员工属于追光族性别有关;

属于追光族

属于观望者

合计

女性员工

男性员工

合计

100

(Ⅱ)已知被抽取的这l00名员工中有6名是人事部的员工,这6名中有3名属于追光族现从这6名中随机抽取3名,求抽取到的3名中恰有1名属于追光族的概率.

附:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案