精英家教网 > 高中数学 > 题目详情

【题目】我国西部某省级风景区内住着一个少数民族村,该村投资了万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按天计算)每天的旅游人数与第天近似地满足(千人),且参观民俗文化村的游客人均消费近似地满足(元).

(1)求该村的第x天的旅游收入,并求最低日收入为多少?(单位:千元,);

(2)若以最低日收入的作为每一天的纯收入计量依据,并以纯收入的税率收回投资成本,试问该村在两年内能否收回全部投资成本?

【答案】1,日最低收入为千元;(2)能.

【解析】

1)根据旅游收入px)等于每天的旅游人数fx)与游客人均消费gx)的乘积,然后去绝对值,从而得到所求;

2)分别研究每一段函数的最值,第一段利用基本不等式求最小值,第二段利用函数的单调性研究最小值,再比较从而得到日最低收入,最后根据题意可判断该村在两年内能否收回全部投资成本.

(1)依据题意,有(,)

时,

(当且仅当时,等号成立) 因此, (千元)

时,

易知函数

上单调递减,于是, (千元)

,所以,日最低收入为千元.

(2)该村两年可收回的投资资金为(千元)= (万元)

因为万元 万元,所以,该村两年内能收回全部投资资金.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过双曲线的左焦点作圆的切线交双曲线的右支于点,且切点为,已知为坐标原点,为线段的中点(点在切点的右侧),若的周长为,则双曲线的渐近线的方程为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的左、右焦点分别为.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.

(1)求椭圆的标准方程;

(2)是否存在直线与椭圆相交于两点,使得?若存在,求的取值范围;若不存在,请说明理由!

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数且 )曲线的参数方程为为参数,且),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为: ,曲线的极坐标方程为.

(1)求的交点到极点的距离;

(2)设交于点,交于点,当上变化时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若的极大值点,求的取值范围;

(2)当时,方程(其中)有唯一实数解,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.

其中正确的有____________(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来大气污染防治工作得到各级部门的重视,某企业在现有设备下每日生产总成本(单位:万元)与日产量(单位:吨)之间的函数关系式为,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为万元,除尘后当日产量时,总成本

1)求的值;

2)若每吨产品出厂价为48万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和圆.

1)若圆与圆相外切,求的值;

2)若圆轴相切,求圆与圆的公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为2切直线MN于点P,射线PKPN出发绕点P逆时针方向旋转到PM,旋转过程中,PK于点Q,设x,弓形PmQ的面积为,那么的图象大致是  

A. B.

C. D.

查看答案和解析>>

同步练习册答案