ÉèM1(0£¬0)£¬M2(1£¬0)£¬ÒÔM1ΪԲÐÄ£¬| M1 M2 | Ϊ°ë¾¶×÷Ô²½»xÖáÓÚµãM3 (²»Í¬ÓÚM2)£¬¼Ç×÷¡ÑM1£»ÒÔM2ΪԲÐÄ£¬| M2 M3 | Ϊ°ë¾¶×÷Ô²½»xÖáÓÚµãM4 (²»Í¬ÓÚM3)£¬¼Ç×÷

¡ÑM2£»¡­¡­£»ÒÔMnΪԲÐÄ£¬| Mn Mn+1 | Ϊ°ë¾¶×÷Ô²½»xÖáÓÚµãMn+2 (²»Í¬ÓÚMn+1)£¬¼Ç×÷¡ÑMn£»¡­¡­

µ±n¡ÊN*ʱ£¬¹ýÔ­µã×÷Çãб½ÇΪ30¡ãµÄÖ±ÏßÓë¡ÑMn½»ÓÚAn£¬Bn£®¿¼²ìÏÂÁÐÂ۶ϣº

µ±n£½1ʱ£¬| A1B1 |£½2£»µ±n£½2ʱ£¬| A2B2 |£½£»µ±n£½3ʱ£¬| A3B3 |£½£»

µ±n£½4ʱ£¬| A4B4 |£½£»¡­¡­

ÓÉÒÔÉÏÂÛ¶ÏÍƲâÒ»¸öÒ»°ãµÄ½áÂÛ£º¶ÔÓÚn¡ÊN*£¬| AnBn |£½                  £®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þÏîʽ(x-
m
x
)6
Õ¹¿ªÊ½Öв»º¬xµÄÏîΪ-160£»Éèf1(x)=
m
1+x
£¬¶¨Òåfn+1(x)=f1[fn(x)]£¬an=
fn(0)-1
fn(0)+2
£¬ÆäÖÐn¡ÊN*£®
£¨¢ñ£©ÇómµÄÖµ£»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©ÈôT2n=a1+2a2+3a3+¡­+2na2n£¬Qn=
4n2+n
4n2+4n+1
£¬ÆäÖÐn¡ÊN*£¬ÊԱȽÏ9T2nÓëQnµÄ´óС£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²C¾­¹ýµãA£¨1£¬2£©¡¢B£¨3£¬0£©£¬²¢ÇÒÖ±Ïßm£º2x-3y=0ƽ·ÖÔ²C£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãD£¨0£¬3£©£¬ÇÒбÂÊΪkµÄÖ±ÏßlÓëÔ²CÓÐÁ½¸ö²»Í¬µÄ½»µãE¡¢F£¬Èô|EF|¡Ý2
3
£¬ÇókµÄÈ¡Öµ·¶Î§£»
£¨3£©ÈôÔ²C¹ØÓÚµã(
3
2
£¬1)
¶Ô³ÆµÄÇúÏßΪԲQ£¬ÉèM£¨x1£¬y1£©¡¢P£¨x2£¬y2£©£¨x1¡Ù¡Àx2£©ÊÇÔ²QÉϵÄÁ½¸ö¶¯µã£¬µãM¹ØÓÚÔ­µãµÄ¶Ô³ÆµãΪM1£¬µãM¹ØÓÚxÖáµÄ¶Ô³ÆµãΪM2£¬Èç¹ûÖ±ÏßPM1¡¢PM2ÓëyÖá·Ö±ð½»ÓÚ£¨0£¬m£©ºÍ£¨0£¬n£©£¬ÎÊm•nÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇÇó³ö¸Ã¶¨Öµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºç¿ÚÇøһģ£©ÒÑÖªÔ²O£ºx2+y2=4£®
£¨1£©Ö±Ïßl1£º
3
x+y-2
3
=0
ÓëÔ²OÏཻÓÚA¡¢BÁ½µã£¬Çó|AB|£»
£¨2£©Èçͼ£¬ÉèM£¨x1£¬y1£©¡¢P£¨x2£¬y2£©ÊÇÔ²OÉϵÄÁ½¸ö¶¯µã£¬µãM¹ØÓÚÔ­µãµÄ¶Ô³ÆµãΪM1£¬µãM¹ØÓÚxÖáµÄ¶Ô³ÆµãΪM2£¬Èç¹ûÖ±ÏßPM1¡¢PM2ÓëyÖá·Ö±ð½»ÓÚ£¨0£¬m£©ºÍ£¨0£¬n£©£¬ÎÊm•nÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇÇó³ö¸Ã¶¨Öµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£ÊзîÏÍÇø2011½ì¸ßÈý12Ôµ÷ÑвâÊÔÊýѧÀí¿ÆÊÔÌâ ÌâÐÍ£º044

Éèh(x)£½£¬x¡Ê[£¬5]£¬ÆäÖÐmÊDz»µÈÓÚÁãµÄ³£Êý£¬

(1)д³öh(4x)µÄ¶¨ÒåÓò£»

(2)Çóh(x)µÄµ¥µ÷µÝÔöÇø¼ä£»

(3)ÒÑÖªº¯Êýf(x)(x¡Ê[a£¬b])£¬¶¨Ò壺f1(x)£½min{f(t)|a¡Üt¡Üx}(x¡Ê[a£¬b])£¬f2(x)£½max{f(t)|a¡Üt¡Üx}(x¡Ê[a£¬b])£®ÆäÖУ¬min{f(x)|x¡ÊD}±íʾº¯Êýf(x)ÔÚDÉϵÄ×îСֵ£¬max{f(x)|x¡ÊD}±íʾº¯Êýf(x)ÔÚDÉϵÄ×î´óÖµ£®ÀýÈ磺f(x)£½cosx£¬x¡Ê[0£¬¦Ð]£¬Ôòf1(x)£½cosx£¬x¡Ê[0£¬¦Ð]£¬f2(x)£½1£¬x¡Ê[0£¬¦Ð]£¬µ±m£½1ʱ£¬É裬²»µÈʽt¡ÜM1(x)£­M2(x)¡Ünºã³ÉÁ¢£¬Çót£¬nµÄÈ¡Öµ·¶Î§£»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013ÄêÉϺ£Êкç¿ÚÇø¸ß¿¼ÊýѧһģÊÔ¾í£¨ÎÄÀíºÏ¾í£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÔ²O£ºx2+y2=4£®
£¨1£©Ö±Ïßl1£ºÓëÔ²OÏཻÓÚA¡¢BÁ½µã£¬Çó|AB|£»
£¨2£©Èçͼ£¬ÉèM£¨x1£¬y1£©¡¢P£¨x2£¬y2£©ÊÇÔ²OÉϵÄÁ½¸ö¶¯µã£¬µãM¹ØÓÚÔ­µãµÄ¶Ô³ÆµãΪM1£¬µãM¹ØÓÚxÖáµÄ¶Ô³ÆµãΪM2£¬Èç¹ûÖ±ÏßPM1¡¢PM2ÓëyÖá·Ö±ð½»ÓÚ£¨0£¬m£©ºÍ£¨0£¬n£©£¬ÎÊm•nÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇÇó³ö¸Ã¶¨Öµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸