精英家教网 > 高中数学 > 题目详情
4.已知复数z=$\frac{\sqrt{3}+i}{(1-\sqrt{3}i)^{2}}$,$\overline{z}$是z的共轭复数,则z•$\overline{z}$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{4}$+$\frac{1}{4}$iD.$\frac{\sqrt{3}}{4}$-$\frac{1}{4}$i

分析 直接利用复数代数形式的乘除运算化简复数z,求出$\overline{z}$,代入z•$\overline{z}$计算得答案.

解答 解:∵z=$\frac{\sqrt{3}+i}{(1-\sqrt{3}i)^{2}}$=$\frac{\sqrt{3}+i}{-2-2\sqrt{3}i}=\frac{(\sqrt{3}+i)(-2+2\sqrt{3}i)}{(-2-2\sqrt{3}i)(-2+2\sqrt{3}i)}$=$\frac{-4\sqrt{3}+4i}{16}=-\frac{\sqrt{3}}{4}+\frac{1}{4}i$,
∴$\overline{z}=-\frac{\sqrt{3}}{4}-\frac{1}{4}i$.
则z•$\overline{z}$=$(-\frac{\sqrt{3}}{4}+\frac{1}{4}i)•(-\frac{\sqrt{3}}{4}-\frac{1}{4}i)=\frac{1}{4}$.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.为研究大气污染与人的呼吸系统疾病是否有关,对重污染地区和轻污染地区作跟踪调查,得出如下数据:
患呼吸系统疾病未患呼吸系统疾病总计
重污染地区1031 3971 500
轻污染地区131 4871 500
总计1162 8843 000
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$能否在犯错误的概率不超过0.001的前提下认为大气污染与人的呼吸系统疾病有关?
参考数据:
P(K2≥k00.0100.0050.001
    k06.6357.87910828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知公差不为0的等差数列{an}满足:a1=1且a2,a5,a14成等比数列.
(1)求数列{an}的通项公式an和前n项和Sn
(2)证明不等式$\frac{3}{2}-\frac{1}{n+1}<\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}<2-\frac{1}{n}(n≥2$且n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)定义域为D,区间(m,n)⊆D,对于任意的x1,x2∈(m,n)且x1≠x2,则“f(x)是(m,n)上的增函数”是“$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$”的(  )
A.充分不必要条件B.充分必要条件
C.必要不充分条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若集合A={x|ax2+ax+1=0}中只有一个元素,则满足条件的实数a构成的集合为{4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1 (a>b>0)的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率e=$\frac{\sqrt{3}}{2}$,△DEF2的面积为1-$\frac{\sqrt{3}}{2}$.若M(x0,y0)在椭圆C上,则点N($\frac{{x}_{0}}{a}$,$\frac{{y}_{0}}{b}$)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知OP⊥OQ.
(1)求椭圆的标准方程;
(2)△AOB的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题:“若p则q”的逆命题是(  )
A.若?p则?qB.若?q则?pC.若q则pD.若p则q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为(  )
A.16π+$\sqrt{3}π$B.16π+8$\sqrt{3}$πC.16π+$\frac{8}{3}\sqrt{3}π$D.16π+$\frac{4}{3}\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,E,E,G,H分别是棱AB,BB1,BC,CC1的中点,∠ABC=90°.则异面直线EF和GH所成的角是(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

同步练习册答案