【题目】执行如图所示的程序框图,则输出的k的值为( )
A.7
B.6
C.5
D.4
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左右焦点分别为F1 , F2 , 且F2为抛物线 的焦点,C2的准线l被C1和圆x2+y2=a2截得的弦长分别为 和4.
(1)求C1和C2的方程;
(2)直线l1过F1且与C2不相交,直线l2过F2且与l1平行,若l1交C1于A,B,l2交C1交于C,D,且在x轴上方,求四边形AF1F2C的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).
(1)求θ关于x的函数关系式;
(2)已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用之比为y,求y关于x的函数关系式,并求出y的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}满足a1=1,(n+1)a2n+1+an+1an﹣na =0,数列{bn}的前n项和为Sn且Sn=1﹣bn .
(1)求{an}和{bn}的通项;
(2)令cn= , ①求{cn}的前n项和Tn;
②是否存在正整数m满足m>3,c2 , c3 , cm成等差数列?若存在,请求出m;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分别为AB,A1C1 , BC的中点.
求证:
(1)C1P∥平面MNC;
(2)平面MNC⊥平面ABB1A1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新课标要求学生数学模块学分认定由模块成绩决定,模块成绩由模块考试成绩和平时成绩构成,各占50%,若模块成绩大于或等于60分,获得2学分,否则不能获得学分(为0分),设计一算法,通过考试成绩和平时成绩计算学分,并画出程序框图.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点M(﹣2,0),N(2,0),动点P满足条件 .记动点P的轨迹为W.
(1)求W的方程;
(2)若A,B是W上的不同两点,O是坐标原点,求 的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和为Sn , 且Sn=n(n+1)(n∈N*)
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:an= + + +…+ ,求数列{bn}的通项公式;
(3)令cn= (n∈N*),求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线 和直线 交于点 .以 为起点,再从曲线 上任取两个点分别为终点得到两个向量,记这两个向量的数量积为 .若 去九寨沟;若 去泰山;若 去长白山; 去武夷山.
(1)若从 这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和不去泰山的概率;
(2)按上述方案,小明在曲线 上取点 作为向量的终点,则小明决定去武夷山.点 在曲线 上运动,若点 的坐标为 ,求 的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com