【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
【答案】(1)24;(2);(3)沙尘暴发生30 h后将侵袭到N城.
【解析】试题分析:(1)先求出线段OA的解析式为v=4t,然后把t=10直接代入求出此时的速度,即可求出S(t)的值;(2)先分段求出速度v与时间t的函数函数关系,再分别乘以时间即可求得对应的函数S(t)的解析式;(3)先由分段函数的解析式以及对应的定义域可以求得其最大值,发现其最大值大于650,即可下结论会侵袭到N城,再把S(t)=650代入即可求出对应的t.
试题解析:解:(1)由图像可知,当t=4时,v=3×4=12,
所以S=×4×12=24 km.
(2)当0≤t≤10时,S=·t·3t=;
当10<t≤20时,S=×10×30+30(t-10)=30t-150;
当20<t≤35时,S=×10×30+10×30+(t-20)×30-×(t-20)×2(t-20)=.
综上可知, .
(3)因为当t∈[0,10]时,Smax=×102=150<650,
当t∈(10,20]时,Smax=30×20-150=450<650,
所以当t∈(20,35]时,令,解得.因为20<t≤35,所以t=30.
故沙尘暴发生30 h后将侵袭到N城.
科目:高中数学 来源: 题型:
【题目】2018年1曰8日,中共中央、国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值与这种新材料的含量(单位:克)的关系为:当时, 是的二次函数;当时, .测得数据如表(部分)
(1)求关于的函数关系式;
(2)其函数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数及函数(a,b,c∈R),若a>b>c且a+b+c=0.
(1)证明:f(x)的图像与g(x)的图像一定有两个交点;
(2)请用反证法证明:;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(, )为奇函数,且相邻两对称轴间的距离为.
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设关于某设备的使用年限(年)和所支出的维修费用(万元)有如下统计资料:
/年 | 2 | 3 | 4 | 5 | 6 |
/万元 |
若由资料知, 对呈线性相关关系,试求:
(1)回归直线方程;
(2)估计使用年限为10年时,维修费用约是多少?
参考公式:回归直线方程: .其中
(注: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是______(写出所有正确结论的序号)
①对任意的x∈(-∞,1),都有f(x)>0;
②存在x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC是顶角为120°的等腰三角形,则存在x∈(1,2),使f(x)=0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com