精英家教网 > 高中数学 > 题目详情
M(1,1)是方程2ax2+by2=1(a>0,b>0)表示的曲线上的点,则
2
a
+
9
b
最小值
 
考点:曲线与方程,基本不等式在最值问题中的应用
专题:计算题,不等式的解法及应用
分析:利用M(1,1)是方程2ax2+by2=1(a>0,b>0)表示的曲线上的点,可得2a+b=1,利用1的代换,结合基本不等式,即可求出
2
a
+
9
b
最小值.
解答: 解:∵M(1,1)是方程2ax2+by2=1(a>0,b>0)表示的曲线上的点,
∴2a+b=1,
2
a
+
9
b
=(
2
a
+
9
b
)(2a+b)=13+
2b
a
+
18a
b
≥13+2
2b
a
18a
b
=25,
当且仅当
2b
a
=
18a
b
时,取等号,即
2
a
+
9
b
最小值为25.
故答案为:25.
点评:本题考查曲线与方程,考查基本不等式在最值问题中,确定2a+b=1,利用1的代换是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)是R上的奇函数,当x>0时,f(x)=-x2+2x+a(a∈R).
(1)若函数f(x)在(0,+∞)上函数值均小于0,求实数a的取值范围;
(2)是否存在实数a,使得函数f(x)在[-1,1]上单调递增?若存在,求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

非零向量
a
b
满足|
a
-
b
|=|
a
+
b
|=2|
a
|,则向量
a
-
b
a
夹角的余弦值为(  )
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设无穷等比数列{an}的公比为q,若a1=
lim
n→∞
(a3+a4+…),则q=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥P-ABC三条侧棱两两垂直,三个侧面面积分别为
2
2
3
2
6
2
,则该三棱锥的外接球表面积为(  )
A、4πB、6πC、8πD、10π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+(y-3)2=25,点P(-1,7),过点P作圆的切线,则该切线的一般式方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=|
b
|=1向量
a
b
的夹角为120°,且(
a
+
b
)⊥(
a
+t
b
),则实数t的值为(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,O是面对角线B1D1的中点.
(1)求证:AO∥平面BDC1
(2)求证:A1C⊥平面BDC1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
x+2
-1≤x≤0
x2-2x,0<x≤1
,若f(2m-1)<
1
2
,则m的取值范围是
 

查看答案和解析>>

同步练习册答案