精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=3x2﹣2x,数列{an}的前n项和为Sn , 点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设bn= ,Tn是数列{bn}的前n项和,求使得Tn 对所有n∈N*都成立的最小正整数m.

【答案】
(1)解:∵f(x)=3x2﹣2x,数列{an}的前n项和为Sn

点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,

当n≥2时,an=Sn﹣Sn1=(3n2﹣2n)﹣[3(n﹣1)2﹣2(n﹣1)]=6n﹣5,

当n=1时,a1=S1=3﹣2=1,满足上式,

∴an=6n﹣5,n∈N*.的


(2)解:由(1)得 = =

∴Tn=

=

∴使得Tn 对所有n∈N*都成立的最小正整数m必须且仅须满足

即m≥10,∴满足要求的最小整数m=10.


【解析】1、利用点在直线上可得到S n = 3 n2 2 n,根据an和 Sn关系式求出 an=6n﹣5。
2、根据(1)的结论可得出数列{bn}的通项公式,求出 Tn 的式子用列项相消法得到 ,再由放缩法得到这个式子小于,由已知可求得 ,故得结果。
【考点精析】通过灵活运用数列的前n项和,掌握数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线 ,方程x2+y2﹣2mx﹣2y+m+3=0表示圆.
(Ⅰ)求实数m的取值范围;
(Ⅱ)当m=﹣2时,试判断直线l与该圆的位置关系,若相交,求出相应弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx﹣cosx)2+ sin(2x+ )(x∈R).
(1)求函数f(x)的递减区间;
(2)若f(α)= ,α∈( ),求cos(2α+ ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市2010年至2016年新开楼盘的平均销售价格y(单位:千元/平米)的统计数据如表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代号x

1

2

3

4

5

6

7

销售价格y

3

3.4

3.7

4.5

4.9

5.3

6


(1)求y关于x的线性回归方程;
(2)利用(Ⅰ)中的回归方程,分析2010年至2016年该市新开楼盘平均销售价格的变化情况,并预测该市2018年新开楼盘的平均销售价格.
附:参考数据及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列 的前 n 项和为 Sn ,且(3-m)Sn+2man=m+3() ,其中 m 为常数,且 .
①求证: 是等比数列;
②若数列 的公比为q=f(m) ,数列 {bn} 满足 b1=a1 ,求证: 为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=1,BC=2,∠CBA= ,ABEF为直角梯形,BE∥AF,∠BAF= ,BE=2,AF=3,平面ABCD⊥平面ABEF.

(1)求证:AC⊥平面ABEF;
(2)求平面ABCD与平面DEF所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义 为n个正数p1 , p2 , …,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为 ,又bn= ,则 + + +…+ =( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以 为概率的事件是(
A.都不是一等品
B.恰有一件一等品
C.至少有一件一等品
D.至多一件一等品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的平面多边形ACBEF中,四边形ABEF是矩形,点O为AB的中点,△ABC中,AC=BC,现沿着AB将△ABC折起,直至平面ABEF⊥平面ABC,如图,此时OE⊥FC.
(1)求证:OF⊥EC;
(2)若FC与平面ABC所成角为30°,求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

同步练习册答案