精英家教网 > 高中数学 > 题目详情

在四棱锥S-ABCD中,底面ABCD是菱形,△SBC,△SDC为正三角形,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(2)求证:平面BDE⊥平面SAC.

证明:(1)设AC与BD的交点为O,因为四边形ABCD是菱形,所以O为AC的中点,
又E为SC的中点,所以,OE为三角形SAC的中位线,所以SA∥OE,又OE?面BDE,
SA?面BDE,所以,SA∥平面BDE;
(2)连接SO,因为四边形ABCD是菱形,所以BD⊥AC,且O是BD的中点,所以BC=CD,
又,△SBC,△SDC为正三角形,所以,SB=BC=CD=SD,故SB=SD,所以BD⊥SO
又SO∩AC=O,SO,AO?平面SAC,所以BD⊥平面SAC,又BD?平面BDE,所以有:
平面BDE⊥平面SAC.
分析: 对于(1)要证明SA∥平面BDE,只需证明SA平行于平面BDE内的一条直线即可,而E为中点,所以连接AC、BD交于点O.由条件知道O为AC中点,从而EO为三角形SAC的中位线,从而得到
SA∥OE,得证;对于(2)由,△SBC,△SDC为正三角形,可以得到SDB为等腰三角形,O为底边BD中点,易得SO⊥BD,又由条件知道BD⊥AC,从而可以证明BD⊥平面SAC,从而得证.
点评:本题考查线面平行的判定、面面垂直的判定,要注意期中的转化思想,即将线面平行转化为线线平行、将面面垂直转化为线面垂直问题解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=
2
,AS=
3
,求:
(Ⅰ)点A到平面BCS的距离;
(Ⅱ)二面角E-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,底面ABCD是边长为2的正方形,侧棱SD=2,SA=2
2
,∠SDC=120°.
(1)求证:侧面SDC⊥底面ABCD;
(2)求侧棱SB与底面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是平行四边形,∠BAD=30°,AB=2,AD=
3
,E是SC的中点.
(Ⅰ)求证:SA∥平面BDE;
(Ⅱ)求证:AD⊥SB;
(Ⅲ)若SD=2,求棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥S-ABCD中,BA⊥面SAD,CD⊥面SAD,SA⊥SD,且SA=SD=DC=2AB.O为AD中点.
(1)求证:SO⊥BC;
(2)求直线SO与面SBC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,BC=3SA=3AB=3AD.
(1)求CD和SB所成角大小;
(2)已知点G在BC边上,①若G点与B点重合,求二面角S-DB-A的大小;
②若BG:GC=2:1,求二面角S-DG-A的大小.

查看答案和解析>>

同步练习册答案