【题目】已知数列的前项和为,当时,满足.
(1)求证:;
(2)求证:数列为等差数列;
(3)若,公差,问是否存在,,使得?如果存在,求出所有满足条件的,,如果不在,请说明理由.
科目:高中数学 来源: 题型:
【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时.
(Ⅰ)求椭圆的方程;
(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知有穷数列,,,,.若数列中各项都是集合的元素,则称该数列为数列.对于数列,定义如下操作过程:从中任取两项,,将的值添在的最后,然后删除,,这样得到一个项的新数列(约定:一个数也视作数列).若还是数列,可继续实施操作过程,得到的新数列记作,,如此经过次操作后得到的新数列记作.
(1)设,,请写出的所有可能的结果;
(2)求证:对于一个项的数列操作总可以进行次;
(3)设,,,,,,,,,求的可能结果,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器,如图,某沙漏由上、下两个圆锥容器组成,圆锥的底面圆的直径和高均为8 cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为( )
A.2 cmB. cmC. cmD. cm
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,椭圆: 的长轴长为4,离心率为.
(1)求椭圆的标准方程;
(2)过右焦点作一条不与坐标轴平行的直线,若交椭圆与、两点,点关于原点的对称点为,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有四座城市、、、,其中在的正东方向,且与相距,在的北偏东方向,且与相距;在的北偏东方向,且与相距,一架飞机从城市出发以的速度向城市飞行,飞行了,接到命令改变航向,飞向城市,此时飞机距离城市有( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中:
①已知函数的定义域为,则函数的定义域为;
②若集合中只有一个元素,则;
③函数在上是增函数;
④方程的实根的个数是1.
所有正确命题的序号是______(请将所有正确命题的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数、的定义域均为,若对任意,且,具有,则称函数为上的单调非减函数,给出以下命题:① 若关于点和直线()对称,则为周期函数,且是的一个周期;② 若是周期函数,且关于直线对称,则必关于无穷多条直线对称;③ 若是单调非减函数,且关于无穷多个点中心对称,则的图象是一条直线;④ 若是单调非减函数,且关于无穷多条平行于轴的直线对称,则是常值函数;以上命题中,所有真命题的序号是_________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左.右焦点分别为,短轴两个端点为,且四边形的边长为 的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若,分别是椭圆长轴的左,右端点,动点满足,连结,交椭圆于点.证明: 的定值;
(Ⅲ)在(Ⅱ)的条件下,试问轴上是否存在异于点,的定点,使得以为直径的圆恒过直线,的交点,若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com