精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
log2x-1
log2x+1
,若f(x1)+f(2x2)=1,(其中x1,x2均大于2),则f(x1x2)的最小值为(  )
A、
5-
5
4
B、
4
5
C、
2
3
D、
3
5
分析:由于f(x1x2)的结构不清,故需要先对所给的条件f(x1)+f(2x2)=1进行变形,进行探究,再由探究出的结果求f(x1x2)的最小值,为了研究的方便,f(x)=1-
2
log2x+1
f(a)+f(2b)=2-2(
1
log22a
+
1
log24b
)=1,所以能够推导出log22a+log24b≥8,所以log2ab≥5,由此知f(ab)=1-
2
log2ab+1
2
3
,故f(x1x2)的最小值为
2
3
解答:解:令x1=a,x2=b其中a、b均大于2,
∵函数f(x)=
log2x-1
log2x+1
,若f(a)+f(2b)=1,其中a>2,b>2,
又f(x)=1-
2
log2x+1

∴f(a)+f(2b)=2-2(
1
log22a
+
1
log24b
)=1.得
1
log22a
+
1
log24b
=
1
2

由(log22a+log24b)(
1
log22a
+
1
log24b
)≥4得log22a+log24b≥8,
∴log2ab≥5,
而f(ab)=1-
2
log2ab+1
2
3

故f(x1x2)的最小值为
2
3

故选C
点评:本题考查函数最值及其几何意义,解题的关键是理解题意,对题设中所给的条件进行探究,逐步寻求它们与f(x1x2)的关系,判断出最小值,本题为了研究的方便采取了给两个变量进行赋值的方法,运算变形时少写了符号简化了计算,本题变形灵活,技巧性高,题后应好好总结
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案