精英家教网 > 高中数学 > 题目详情

【题目】设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2 , a3+4构成等差数列.
(1)求数列{an}的通项公式.
(2)令bn=lna3n+1 , n=1,2,…,求数列{bn}的前n项和Tn

【答案】
(1)解:由已知得

解得a2=2.

设数列{an}的公比为q,由a2=2,

可得

又S3=7,可知

即2q2﹣5q+2=0,

解得

由题意得q>1,

∴q=2,

∴a1=1.故数列{an}的通项为an=2n1


(2)解:由于bn=lna3n+1,n=1,2,

由(1)得a3n+1=23n

∴bn=ln23n=3nln2,又bn+1﹣bn=3ln2,

∴{bn}是等差数列.

∴Tn=b1+b2++bn

=

=

=


【解析】(1)由{an}是公比大于1的等比数列,S3=7,且a1+3,3a2 , a3+4构成等差数列,我们不难构造方程组,解方程组即可求出相关基本量,进而给出数列{an}的通项公式.(2)由bn=lna3n+1 , n=1,2,…,我们易给出数列{bn}的通项公式,分析后可得:数列{bn}是一个等差数列,代入等差数列前n项和公式即可求出Tn
【考点精析】解答此题的关键在于理解等比数列的通项公式(及其变式)的相关知识,掌握通项公式:,以及对数列的前n项和的理解,了解数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)求在区间上零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数定义域为,若对于任意的,都有,且时,有.

(1)判断并证明函数的奇偶性;

(2)判断并证明函数的单调性;

(3)设,若,对所有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是(
A.( ,+∞)
B.(﹣∞,
C.(0,
D.( ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种设备的单价为设备维修和消耗费用第一年为以后每年增加是常数.用表示设备使用的年数记设备年平均费用为 (设备单价设备维修和消耗费用)设备使用的年数.

(Ⅰ)求关于的函数关系式;

(Ⅱ)当 求这种设备的最佳更新年限.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知
(1)请写出fn(x)的表达式(不需证明);
(2)设fn(x)的极小值点为Pn(xn , yn),求yn
(3)设 ,gn(x)的最大值为a,fn(x)的最小值为b,求b﹣a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x与相应的生产能耗y的几组对照数据

x

3

4

5

6

y

2.5

3

4

4.5

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.(其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)﹣x2 , 是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱椎中,底面为菱形, 的中点.

(1)求证: 平面

(2)若底面 ,求三棱椎的体积.

查看答案和解析>>

同步练习册答案