精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,侧棱底面,底面为长方形,且的中点,作于点.

(1)证明:平面

(2)若三棱锥的体积为,求二面角的正弦值.

【答案】(1)见解析;(2).

【解析】分析:(1)推导出,从而平面,进而,再证出,从而平面,再由,能证明平面
(II)由两两垂直,以为坐标原点,建立空间直角坐标系,利用向量法能求出二面角的正弦值.

详解:

(1)证明:∵底面平面

由于底面为长方形

,而

平面

平面

中点,

平面

平面

(2)由题意易知两两垂直,以为坐标原点,

建立如图空间直角坐标系,可得

,则有

设平面的法向量,由,则

,则

由(1)平面

为平面的法向量

设二面角,则

所以二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中(为坐标原点),已知两点,且三角形的内切圆为圆,从圆外一点向圆引切线为切点。

(1)求圆的标准方程.

(2)已知点,且,试判断点是否总在某一定直线上,若是,求出直线的方程;若不是,请说明理由.

(3)已知点在圆上运动,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为 为直线上一点,线段于点,若,则__________

【答案】

【解析】

由条件椭圆

椭圆的右焦点为F,可知F(1,0),

设点A的坐标为(2m),则=1m),

B的坐标为

B在椭圆C上,

,解得:m=1

A的坐标为(21),.

答案为: .

型】填空
束】
16

【题目】四棱锥中, 是平行四边形, ,点为棱的中点,点在棱上,且,平面交于点,则异面直线所成角的正切值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列中,,公比,用表示它的前项之积:,则中最大的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 平面 的中点.

(Ⅰ)证明: 平面

(Ⅱ)求多面体的体积;

(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(改编)已知正数数列的前项和为,且满足;在数列中,

(1)求数列的通项公式;

(2)设,数列的前项和为. 若对任意,存在实数,使恒成立,求的最小值;

(3)记数列的前项和为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C b0)的左、右顶点分别为A1A2,上、下顶点分别为B2B1O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为

(Ⅰ)求椭圆C的方程;

(Ⅱ)若MN是椭圆C上的两个不同的动点,直线OMON的斜率之积等于,试探求△OMN的面积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)证明函数f ( x )的图象关于轴对称;

2)判断上的单调性,并用定义加以证明;

3)当x12]时函数f (x )的最大值为,求此时a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校高一数学考试后,对分(含分)以上的成绩进行统计,其频率分布直方图如图所示,分数在分的学生人数为人,

(1)求这所学校分数在分的学生人数;

(2)请根据频率发布直方图估计这所学校学生分数在分的学生的平均成绩;

(3)为进“步了解学生的学习情况,按分层抽样方法从分数在分和分的学生中抽出人,从抽出的学生中选出人分别做问卷和问卷,求分的学生做问卷分的学生做问卷的概率.

查看答案和解析>>

同步练习册答案