精英家教网 > 高中数学 > 题目详情

【题目】已知F是抛物线x2=4y的焦点,P是抛物线上的一个动点,且A的坐标为(0,﹣1),则 的最小值等于

【答案】
【解析】解:由题意可得,抛物线x2=4y的焦点F(0,1),

准线方程为y=﹣1.

过点P作PM垂直于准线,M为垂足,

则由抛物线的定义可得|PF|=|PM|,

= =sin∠PAM,∠PAM为锐角;

所以当∠PAM最小时, 最小,

即当PA和抛物线相切时, 最小.

设切点P(2 ,a),由y= x2的导数为y′= x,

则PA的斜率为k= 2 = =

求得a=1,可得P(2,1),

∴|PM|=2,|PA|=2

∴sin∠PAM= =

的最小值等于

所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是 . ① f(﹣ )<f(﹣
f( )<f(
③f(0)>2f(
④f(0)> f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 )是定义域为R的奇函数.
(1)求k的值;
(2)若 ,不等式 恒成立,求实数t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c=0实根的个数(重根按一个计).
(1)求方程x2+bx+c=0有实根的概率;
(2)(理)求ξ的分布列和数学期望 (文)求P(ξ=1)的值
(3)(理)求在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体 中,四边形 是边长为 的正方形, 平面 .

(1)求证: 平面
(2)求直线 与平面 所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“全面二孩”政策推行,我市将迎来生育高峰.今年新春伊始,宜城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩”宝宝;市妇幼保健院共有30个猴宝宝降生,其中10个是“二孩”宝宝. (I)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询.
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(Ⅱ)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
附:

P(k2>k0

0.4

0.25

0.15

0.10

k0

0.708

1.323

2.072

2.706

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 表示两条不同的直线, 表示一个平面,给出下列四个命题:
;②
;④ .
其中正确命题的序号是( )
A.①②
B.②③
C.②④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥 中,底面 是边长为1的正方形,侧棱 底面 ,且 是侧棱 上的动点.

(1)求四棱锥 的表面积;
(2)是否在棱 上存在一点 ,使得 平面 ;若存在,指出点 的位置,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合.曲线 (t为参数),曲线C2的极坐标方程为ρ=ρcos2θ+8cosθ. (Ⅰ)将曲线C1 , C2分别化为普通方程、直角坐标方程,并说明表示什么曲线;
(Ⅱ)设F(1,0),曲线C1与曲线C2相交于不同的两点A,B,求|AF|+|BF|的值.

查看答案和解析>>

同步练习册答案