精英家教网 > 高中数学 > 题目详情

【题目】圆x2+y2=8内有一点P0(﹣1,2),AB为过点P0且倾斜角为α的弦;
(1)当 时,求AB的长;
(2)当弦AB被点P0平分时,求直线AB的方程.

【答案】
(1)解:直线AB的斜率k=tan =﹣1,

∴直线AB的方程为y﹣2=﹣(x+1),即x+y﹣1=0

∵圆心O(0,0)到直线AB的距离d= =

∴弦长|AB|=2 =2 =


(2)解:∵P0为AB的中点,OA=OB=r,

∴OP0⊥AB

= =﹣2,∴kAB=

∴直线AB的方程为y﹣2= (x+1),即x﹣2y+5=0


【解析】(1)根据直线的倾斜角求出斜率.因为直线AB过P0(﹣1,2),可表示出直线AB的解析式,利用点到直线的距离公式求出圆心到弦的距离,根据勾股定理求出弦的一半,乘以2得到弦AB的长;(2)因为弦AB被点P0平分,先求出OP0的斜率,然后根据垂径定理得到OP0⊥AB,由垂直得到两条直线斜率乘积为﹣1,求出直线AB的斜率,然后写出直线的方程.
【考点精析】通过灵活运用直线的倾斜角和一般式方程,掌握当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α=0°;直线的一般式方程:关于的二元一次方程(A,B不同时为0)即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点P是边长为1的正六边形ABCDEF的边上的一个动点,设 =x +y ,则x+y的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U为R,集合A={x|x2<4},B= (x﹣2)},则下列关系正确的是(
A.A∪B=R
B.A∪(B)=R
C.(A)∪B=R
D.A∩(B)=A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,三个内角A,B,C所对的边分别为a,b,c,已知函数f(x)=sin(3x+B)+cos(3x+B)是偶函数,且b=f( ).
(1)求b.
(2)若a= ,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场在一部向下运行的手扶电梯终点的正上方竖直悬挂一幅广告画.如图,该电梯的高AB为4米,它所占水平地面的长AC为8米.该广告画最高点E到地面的距离为10.5米.最低点D到地面的距离6.5米.假设某人的眼睛到脚底的距离MN为1.5米,他竖直站在此电梯上观看DE的视角为θ.
(1)设此人到直线EC的距离为x米,试用x表示点M到地面的距离;
(2)此人到直线EC的距离为多少米,视角θ最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(a﹣2)x﹣2,a∈R.
(1)若关于x的不等式f(x)≤0的解集为[﹣1,2],求实数a的值;
(2)当a<0时,解关于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的夹角为120°,且| |=4,| |=2.求:
(1)( ﹣2 )( + );
(2)|3 ﹣4 |.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如表所示:
根据下表信息解答以下问题:

休假次数

0

1

2

3

人数

5

10

20

15


(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

同步练习册答案