精英家教网 > 高中数学 > 题目详情
(1)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,椭圆C上任意一点到椭圆两焦点的距离和为6.求椭圆C的方程;
(2)直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B.求实数k的取值范围.
(1)∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,椭圆C上任意一点到椭圆两焦点的距离和为6,
∴2a=6,
c
a
=
6
3
,解得a=3,c=
6

∴b2=a2-c2=3
故椭圆C的方程为
x2
9
+
y2
3
=1

(2)将直线l的方程y=kx+1代入双曲线C的方程2x2-y2=1后,整理得(k2-2)x2+2kx+2=0.
依题意,直线l与双曲线C右支交于不同两点,则
k2-2≠0,△=(2k)2-8(k2-2)>0,-
2k
k2-2
>0,
2
k2-2
>0
解得k的取值范围为-2<k<-
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
4
+
y2
3
=1
的左焦点为F,过F点的直线l交椭圆于A,B两点,P为线段AB的中点,当△PFO的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心为坐标原点,离心率为
2
2
,直线?与椭圆C相切于M点,F1、F2为椭圆的左右焦点,且|MF1|+|MF2|=2
2

(1)求椭圆C的标准方程;
(2)若直线m过F1点,且与椭圆相交于A、B两点,|AF2|+|BF2|=
8
2
3
,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点F(1,0),直线L:x=-1,P为平面上的动点,过点P作直线L的垂线,垂足为Q,且
QP
QF
=
FP
FQ

(1)求点P的轨迹C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
FA
FB
<0
?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为1的直线l与抛物线C相交于A,B两点,若线段AB的中点到抛物线C准线的距离为4,则p的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,双曲线
x2
a2
-
y2
b2
=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:
(Ⅰ)双曲线的离心率e=______;
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值
S1
S2
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知点P(a,b),A(x1,y1),B(x2,y2)均在抛物线y2=2px(p>0)上,PA,PB与x轴分别交于C,D两点,且PC=PD,则y1+y2的值为…(  )
A.-2aB.2bC.2pD.-2b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
25
+
y2
16
=1
,过点(3,0)的且斜率为
4
5
的直线被C所截线段的中点坐标为(  )
A.(
1
2
6
5
)
B.(
1
2
,-
6
5
)
C.(
3
2
6
5
)
D.(
3
2
,-
6
5
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
C:的左右焦点为F1,F2,离心率为e,直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,且
AM
=
3
4
AB

(1)计算椭圆的离心率e
(2)若直线l向右平移一个单位后得到l′,l′被椭圆C截得的弦长为
5
4
,则求椭圆C的方程.

查看答案和解析>>

同步练习册答案