【题目】如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:
(1)直线BC1∥平面EFPQ.
(2)直线AC1⊥平面PQMN.
【答案】(1)见解析(2) 见解析
【解析】试题分析:(1)只需利用三角形中位线定理证明直线BC1平行于平面EFPQ内一条直线FP即可;
(2)只需证明直线AC1垂直于平面PQMN内两条相交直线MN,PN即可。
试题解析:(1)连接AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1,
因为F,P分别是AD,DD1的中点,所以FP∥AD1.
从而BC1∥FP.
而FP平面EFPQ,且BC1平面EFPQ,
故直线BC1∥平面EFPQ.
(2)连接AC,BD,则AC⊥BD.
由CC1⊥平面ABCD,BD平面ABCD,可得CC1⊥BD.
又AC∩CC1=C,所以BD⊥平面ACC1.
而AC1平面ACC1,所以BD⊥AC1.
因为M,N分别是A1B1,A1D1的中点,
所以MN∥BD,从而MN⊥AC1.
同理可证PN⊥AC1.
又PN∩MN=N,所以直线AC1⊥平面PQMN.
点晴:本题第一问考查的是直线与平面平行的判定。通过证明平面外的直线与平面内的直线线平行,从而证明线面平行。寻找线线平行的一般办法有:一、利用三角形中位线定理,二、利用平形四边形的性质;三、利用两直线都垂直于同一平面,两直线平行;四、利用线面平行的性质等。
科目:高中数学 来源: 题型:
【题目】如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有____________(把所有正确的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“菊花”型烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂.通过研究,发现该型烟花爆裂时距地面的高度(单位:米)与时间(单位:秒)存在函数关系,并得到相关数据如表:
时间 | 1 | ||
高度 |
(1)根据表中数据,从下列函数中选取一个函数描述该型烟花爆裂时距地面的高度与时间的变化关系: , , ,确定此函数解析式并简单说明理由;
(2)利用你选取的函数,判断烟花爆裂的最佳时刻,并求此时烟花距地面的高度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=2sin(x-)-,现将f(x)的图象向左平移个单位长度,再向上平移个单位长度,得到函数g(x)的图象.
(1)求f()+g()的值;
(2)若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=4,且当x=B时,g(x)取得最大值,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD .
(1)求证:CD⊥平面ABD;
(2)若AB=BD=CD=1,M为AD中点,求三棱锥A-MBC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且的离心率为.
(1)求的方程;
(2)过的顶点作两条互相垂直的直线与椭圆分别相交于两点.若的角平分线方程为,求的面积及直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国好声音()》是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,当每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练.已知某期《中国好声音》中,6位选手唱完后,四位导师为其转身的情况如下表所示:
导师转身人数(人) | 4 | 3 | 2 | 1 |
获得相应导师转身的选手人数(人) | 1 | 2 | 2 | 1 |
现从这6位选手中随机抽取两人考查他们演唱完后导师的转身情况.
(1)请列出所有的基本事件;
(2)求两人中恰好其中一位为其转身的导师不少于3人,而另一人为其转身的导师不多于2人的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com