分析 直接利用分析法的证明步骤,结合函数的单调性证明即可.
解答 证明:∵ba>0,ab>0,
∴要证:ba>ab
只要证:alnb>blna
只要证$\frac{lnb}{b}>\frac{lna}{a}$.(∵a>b>e)
取函数$f(\begin{array}{l}x\end{array})=\frac{lnx}{x}$,∵$f'(\begin{array}{l}x\end{array})=\frac{1-lnx}{x^2}$
∴当x>e时,$f'(\begin{array}{l}x\end{array})<0$,∴函数$f(\begin{array}{l}x\end{array})$在$(\begin{array}{l}{e,+∞}\end{array})$上是单调递减.
∴当a>b>e时,有$f(\begin{array}{l}b\end{array})>f(\begin{array}{l}a\end{array})$,
即$\frac{lnb}{b}>\frac{lna}{a}$.得证.
点评 本题考查不等式的证明,考查分析法的应用,考查分析问题解决问题的能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | M与N | B. | N与P | C. | M与Q | D. | N与Q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -4 | B. | $-\frac{1}{4}$ | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com