精英家教网 > 高中数学 > 题目详情
在直角坐标系xoy中,直线I的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
  (t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=
2
cos(θ+
π
4
).
(1)求直线I被曲线C所截得的弦长;
(2)若M(x,y)是曲线C上的动点,求x+y的最大值.
考点:参数方程化成普通方程
专题:计算题,直线与圆,坐标系和参数方程
分析:(1)将曲线C化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.
(2)运用圆的参数方程,设出M,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.
解答: 解:(1)直线I的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
  (t为参数),消去t,
可得,3x+4y+1=0;
由于ρ=
2
cos(θ+
π
4
)=
2
2
2
cosθ-
2
2
sinθ
),
即有ρ2=ρcosθ-ρsinθ,则有x2+y2-x+y=0,其圆心为(
1
2
,-
1
2
),半径为r=
2
2

圆心到直线的距离d=
|
3
2
-2+1|
9+16
=
1
10

故弦长为2
r2-d2
=2
1
2
-
1
100
=
7
5

(2)可设圆的参数方程为:
x=
1
2
+
2
2
cosθ
y=-
1
2
+
2
2
sinθ
(θ为参数),
则设M(
1
2
+
2
2
cosθ
-
1
2
+
2
2
sinθ
),
则x+y=
2
2
cosθ+
2
2
sinθ
=sin(θ+
π
4
),
由于θ∈R,则x+y的最大值为1.
点评:本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)在R上是奇函数,且f(-1)=f(0)=f(1)=0,若f(x)在(-∞,0)上是减函数,又f(a)>f(a+1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个对数函数y=f(x)的图象过点(9,2);
(1)求f(x)的解析式
(2)若x>0且满足f(x)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2(x2-5x+4)的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=loga(2-ax)在(0,4)上为增函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,O为坐标原点,若向量
OA
=(a,3,4a-1),
OB
=(2-3a,2a+1,3),a∈R,且M是线段AB的中点,则|
OM
|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+lnx,函数g(x)=ex,其中e为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若?x∈(0,+∞),使得不等式g(x)<
x-m+3
x
成立,试求实数m的取值范围;
(Ⅲ)当a=0时,对于?x∈(0,+∞),求证:f(x)<g(x)-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的长轴长是短轴长的两倍,焦距为2
3

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设不过原点O的直线l与椭圆C交于两点M、N,且直线OM、MN、ON的斜率依次满足kMN2=kOM•kON,求△OMN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.函数y=g(x)的定义域为[a,b],值域为[
1
b
1
a
],其中a、b≠0.在x∈[a,b]时f(x)=g(x).
(1)求f(x)解析式;
(2)求a、b的值;
(3)是否存在实数m,使{(x,y)|y=g(x),x∈[a,b]}∩{(x,y)|y=
1
4
x2+m}≠∅?若存在,求出m的值;若不存在请说明理由.

查看答案和解析>>

同步练习册答案