精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥中,OAOBOC所在直线两两垂直,且CA与平面AOB所成角为DAB中点,三棱锥的体积是

1)求三棱锥的高;

2)在线段CA上取一点E,当E在什么位置时,异面直线BEOD所成的角为

【答案】1;(2E是线段CA中点.

【解析】

1)设,则,代入体积公式计算得到答案.

2))以轴,轴,轴建立如图所示空间直角坐标系,设

,根据,代入计算得到答案.

1)因为,所以

所以就是CA与平面AOB所成角,所以

,则

所以

所以,所以三棱锥的高

2)以轴,轴,轴建立如图所示空间直角坐标系

,设

BEOD所成的角为,则,所以(舍去),

所以当E是线段CA中点时,异面直线BEOD所成的角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,若底面是正三角形,侧棱长分别为棱的中点,并且,则异面直线所成角为______;三棱锥的外接球的体积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体中,四边形是正方形,平面的中点.

1)求证:

2)求平面与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,,且.

1的通项公式为__________

2)在项中,被除余的项数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足,且,分别是定义在上的偶函数和奇函数.

(1)求函数的反函数;

(2)已知,若函数上满足,求实数a的取值范围;

(3)若对于任意不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行四边形中,边的中点,沿折起使得平面平面.

1)求证:平面平面

2)求四棱锥的体积;

3)求折后直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调性;

2)当时,,求函数上的最小值;

3)当时,有两个零点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点,关于抛物线的对称轴对称,斜率为1的直线交抛物线于两点,且在直线两侧.

1)求证:平分

2)点为抛物线在处切线的交点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲同学参加化学竞赛初赛,考试分为笔试、口试、实验三个项目,各单项通过考试的概率依次为,笔试、口试、实验通过考试分别记4分、2分、4分,没通过的项目记0分,各项成绩互不影响.

(Ⅰ)若规定总分不低于8分即可进入复赛,求甲同学进入复赛的概率;

(Ⅱ)记三个项目中通过考试的个数为,求随机变量的分布列和数学期望.

查看答案和解析>>

同步练习册答案