【题目】在三棱锥中,OA、OB、OC所在直线两两垂直,且,CA与平面AOB所成角为,D是AB中点,三棱锥的体积是.
(1)求三棱锥的高;
(2)在线段CA上取一点E,当E在什么位置时,异面直线BE与OD所成的角为?
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,若底面是正三角形,侧棱长,、分别为棱、的中点,并且,则异面直线与所成角为______;三棱锥的外接球的体积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数满足,且,分别是定义在上的偶函数和奇函数.
(1)求函数的反函数;
(2)已知,若函数在上满足,求实数a的取值范围;
(3)若对于任意不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平行四边形中,,,为边的中点,沿将折起使得平面平面.
(1)求证:平面平面;
(2)求四棱锥的体积;
(3)求折后直线与平面所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点,与关于抛物线的对称轴对称,斜率为1的直线交抛物线于、两点,且、在直线两侧.
(1)求证:平分;
(2)点为抛物线在、处切线的交点,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲同学参加化学竞赛初赛,考试分为笔试、口试、实验三个项目,各单项通过考试的概率依次为、、,笔试、口试、实验通过考试分别记4分、2分、4分,没通过的项目记0分,各项成绩互不影响.
(Ⅰ)若规定总分不低于8分即可进入复赛,求甲同学进入复赛的概率;
(Ⅱ)记三个项目中通过考试的个数为,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com