【题目】在△ABC中,内角A、B、C的对边分别为a、b、c,且a>c,已知=2,cosB=,b=3,求:
(1)a和c的值;
(2)cos(B-C)的值.
【答案】(1)a=2,c=3或a=3,c=2;(2).
【解析】试题分析:(Ⅰ)利用平面向量的数量积运算法则化简·=2,将cosB的值代入求出ac=6,再利用余弦定理列出关系式,将b,cosB以及ac的值代入得到a2+c2=13,联立即可求出ac的值;(Ⅱ)由cosB的值,利用同角三角函数间基本关系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,进而求出cosC的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值
试题解析:(1)由·=2,得c·acos B=2,
又cos B=,所以ac=6.
由余弦定理,得a2+c2=b2+2accos B,
又b=3,所以a2+c2=9+2×2=13.
联立得或
因为a>c,所以a=3,c=2.
(2)在△ABC中,sin B===.
由正弦定理,得sin C=sin B=×=.
因为a=b>c,所以C为锐角,因此cos C===.
于是cos(B-C)=cos Bcos C+sin Bsin C=×+×=.
科目:高中数学 来源: 题型:
【题目】某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,解方程;
(2)当时,若不等式在上恒成立,求实数a的取值范围;
(3)若a为常数,且函数在区间上存在零点,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有关部门从甲、乙两个城市所有的自动售货机中随机抽取了16台,记录下上午8:00~11:00之间各自的销售情况(单位:元):
甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41;
乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.
试用两种不同的方式分别表示上面的数据,并简要说明各自的优点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足对任意,存在常数,都有成立,则称
是上的有界函数,其中称为函数的上界,已知函数.
(1)当时,求函数在上的值域,判断函数在上是否为有界函数,并说明理由.
(2)若函数在上是以为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另30人比较粗心.
(1)试根据上述数据完成2×2列联表;
数学成绩及格 | 数学成绩不及格 | 合计 | |
比较细心 | |||
比较粗心 | |||
合计 |
(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系. 参考数据:独立检验随机变量K2的临界值参考表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y=2x2和直线l:y=kx+1,O为坐标原点.
(1)求证:l与C必有两交点;
(2)设l与C交于A(x1 , y1)、B(x2 , y2)两点,且直线OA和OB的斜率之和为1,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高三(三)班学生要安排毕业晚会的3个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,3个音乐节目恰有两个节目连排,则不同排法的种数是( )
A.240
B.188
C.432
D.288
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD边的中点,
(1)求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com