精英家教网 > 高中数学 > 题目详情

【题目】在学习强国活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为,市民之间选择意愿相互独立.

1)从问卷市民中随机抽取4人,记总得分为随机变量,求的分布列和数学期望;

2)(i)若从问卷市民中随机抽取人,记总分恰为分的概率为,求数列的前10项和;

(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为分的概率为(比如:表示累计得分为1分的概率,表示累计得分为2分的概率,),试探求之间的关系,并求数列的通项公式.

【答案】1)分布列见解析,6;(2)(i;(ⅱ).

【解析】

1)独立重复试验,列出随机变量可能取值为45678,再求出各可能值的概率可解得.

2)(i)总分恰为分的概率是等比数列,用基本量计算.

2)(ⅱ)递推数列化为等比数列求解.

1的可能取值为45678

所有的分布列为

4

5

6

7

8

所以数学期望.

2)(i)总分恰为分的概率为

所以数列是首项为,公比为的等比数列,

10项和.

ii)已调查过的累计得分恰为分的概率为,得不到分的情况只有先得分,再得2分,概率为.

因为,即

所以

是首项为,公比为的等比数列,

所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:

5860 6520 7326 6798 7325 8430 8215 7453 7446 6754

7638 6834 6460 6830 9860 8753 9450 9860 7290 7850

对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:

步数分组统计表(设步数为

组别

步数分组

频数

2

10

2

(Ⅰ)写出的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;

(Ⅱ)记组步数数据的平均数与方差分别为,,组步数数据的平均数与方差分别为,试分别比较与以的大小;(只需写出结论)

(Ⅲ)从上述两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为.

(1)求数列的通项公式;

(2)设数列满足:

对于任意,都有成立.

①求数列的通项公式;

②设数列,问:数列中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等腰梯形中(如图1),为线段的中点,为线段上的点,,现将四边形沿折起(如图2

1)求证:平面

2)在图2中,若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上存在极大值,求的取值范围;

2)若轴是曲线的一条切线,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆分别是椭圆长轴的左、右端点,为椭圆上的动点.

1)求的最大值,并证明你的结论;

2)设直线的斜率为,且,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线为参数,),曲线为参数),相切于点,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.

1)求的极坐标方程及点的极坐标;

2)已知直线与圆交于两点,记的面积为的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)设上存在极大值M,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.

将年份19781988199820082018分别用12345代替,并表示为表示全国GDP总量,表中.

3

26.474

1.903

10

209.76

14.05

1)根据数据及统计图表,判断(其中为自然对数的底数)哪一个更适宜作为全国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.

2)使用参考数据,估计2020年的全国GDP总量.

线性回归方程中斜率和截距的最小二乘法估计公式分别为:

.

参考数据:

4

5

6

7

8

的近似值

55

148

403

1097

2981

查看答案和解析>>

同步练习册答案