精英家教网 > 高中数学 > 题目详情

【题目】半正多面体(semiregular solid)亦称阿基米德多面体,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为,则该二十四等边体外接球的表面积为(

A.B.C.D.

【答案】C

【解析】

由已知根据该几何体的对称性可知,该几何体的外接球即为底面棱长为,侧棱长为的正四棱柱的外接球,利用勾股定理得到关于的方程,解得值再代入球的面积公式.

由已知根据该几何体的对称性可知,该几何体的外接球即为底面棱长为,侧棱长为的正四棱柱的外接球,

,,

该二十四等边体的外接球的表面积.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过原点且斜率为1的直线交椭圆两点,四边形的周长与面积分别为12.

1)求椭圆的标准方程;

2)直线与圆相切,且与椭圆交于两点,求原点到的中垂线的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列项和为,且满足

(1)求数列的通项公式;

(2)求数列项和

(3)在数列中,是否存在连续的三项,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表.

分类意识强

分类意识弱

合计

试点后

试点前

合计

已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为.

1)请将上面的列联表补充完整;

2)判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;

参考公式:,其中.

下面的临界值表仅供参考

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点为为上顶点,点为椭圆上一动点.

1)若,求直线轴的交点坐标;

2)设为椭圆的右焦点,过点轴垂直的直线为的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数(单位:百人)对年产能(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.

1)根据散点图判断:哪一个适宜作为年产能关于投入的人力的回归方程类型?并说明理由?

2)根据(1)的判断结果及相关的计算数据,建立关于的回归方程;

3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?

附注:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为(说明:的导函数为)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

空气质量

轻度污染

中度污染

重度污染

严重污染

如图是某市121-20AQI指数变化趋势:

下列叙述正确的是(

A.20天中AQI指数值的中位数略高于100

B.20天中的中度污染及以上的天数占

C.该市12月的前半个月的空气质量越来越好

D.总体来说,该市12月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等腰直角三角形的斜边AB为正四面体侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:

(1)四面体EBCD的体积有最大值和最小值;

(2)存在某个位置,使得

(3)设二面角的平面角为,则

(4)AE的中点MAB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.

其中,正确说法的个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):

若分数不低于95分,则称该员工的成绩为优秀”.

1)从这20人中任取3人,求恰有1人成绩优秀的概率;

2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.

组别

分组

频数

频率

1

2

3

4

①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);

②若从所有员工中任选3人,记表示抽到的员工成绩为优秀的人数,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案