分析 (1)先化简再求导即可,
(2)根据导数的运算法则求导即可.
解答 解:(1)y=($\sqrt{x}$+1)($\frac{1}{\sqrt{x}}$-1)=$\frac{1-x}{\sqrt{x}}$=$\frac{1}{\sqrt{x}}$-$\sqrt{x}$=${x}^{-\frac{1}{2}}$-${x}^{\frac{1}{2}}$,
∴y′=-$\frac{1}{2}$${x}^{-\frac{3}{2}}$-$\frac{1}{2}$x${\;}^{-\frac{1}{2}}$,
(2)y′=$\frac{2x(2x+1)^{3}-{x}^{2}((2x+1)^{3})′}{(2x+1)^{6}}$+$\frac{1}{xln2}$=$\frac{2x(2x+1)^{3}-6{x}^{2}(2x+1)^{2}}{(2x+1)^{6}}$+$\frac{1}{xln2}$=$\frac{2x-2{x}^{2}}{(2x+1)^{4}}$+$\frac{1}{xln2}$
点评 本题考查导数的计算,关键是掌握导数的计算公式.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [0,+∞) | B. | (-2,-1] | C. | (-2,0] | D. | (-∞,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6>10 | B. | x>2 | C. | 若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=0 | D. | 0∈N |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com