精英家教网 > 高中数学 > 题目详情

【题目】一汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.

轿车

轿车

轿车

舒适型

100

150

标准型

300

450

600

1)求的值;

2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;

3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把这8辆轿车的得分看作一个总体,从中任取一个得分数记这8辆轿车的得分的平均数为,定义事件,且函数没有零点,求事件发生的概率.

【答案】1400;(2;(3

【解析】

1)由分层抽样按比例可得

2)把5个样本编号,用列举法列出任取2辆的所有基本事件,得出至少有1辆舒适型轿车的基本事件,计数后可得概率.

3)求出,确定事件所含的个数后可得概率.

1)由题意,解得

2C类产品中舒适型和标准型产品数量比为,因此5人样品中舒适型抽取了2辆,标准型抽取了3辆,编号为,任取2辆的基本事件有:共10个,其中至少有1辆舒适型轿车的基本事件有共7个,所求概率为

(3)由题意

满足的有共6个,

函数没有零点,则,解得,再去掉,还有4个,

∴所求概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点,为准线,且轴的交点为.过点任意作一条直线交抛物线两点.

(1)若 ,求证:;

(2)设为线段的中点,为奇质数,且点轴的距离和点到准线的距离均为非零整数.求证:点到坐标原点的距离不可能是整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数,.

1)求函数在点处的切线方程;

2)若对于任意,存在,使得,求的取值范围;

3)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,且,其中.

(1)求的值.

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从的路径中,最短路径的长度为( )

A. B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是正方形,点在以为直径的半圆弧上(不与重合),为线段的中点,现将正方形沿折起,使得平面平面.

1)证明:平面.

2)若,当三棱锥的体积最大时,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用一张长为12,宽为8的铁皮围成圆柱形的侧面,则这个圆柱的体积为_____;半径为R的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且

1)求角A

2)若△ABC外接圆的面积为,且△ABC的面积,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

,试证明:当时,

若对任意均有两个极值点

试求b应满足的条件;

时,证明:

查看答案和解析>>

同步练习册答案