精英家教网 > 高中数学 > 题目详情

【题目】如图,棱长为1(单位:)的正方体木块经过适当切割,得到几何体,已知几何体由两个底面相同的正四棱锥组成,底面平行于正方体的下底面,且各顶点均在正方体的面上,则几何体体积的取值范围是________(单位:).

【答案】

【解析】

根据图形可知几何体体积由正方形面积来决定,根据截面正方形可知当为四边中点时,面积最小;为正方形四个顶点时,面积最大,从而得到面积的取值范围;利用棱锥的体积公式可求得几何体的体积的取值范围.

由题意知,几何体中两个正四棱锥的高均为,则几何体体积取值范围由正方形的面积来决定

底面平行于正方体底面,则可作所在截面的平面图如下:

由正方形对称性可知,当为四边中点时,取最小值;当为正方形四个顶点时,取最大值;

几何体体积:

本题正确结果:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,PA⊥平面ABCDCDADBCAD.

(Ⅰ)求证:CDPD

(Ⅱ)求证:BD⊥平面PAB

(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校参加某项竞赛仅有一个名额,结合平时训练成绩,甲、乙两名学生进入最后选拔,学校为此设计了如下选拔方案:设计6道测试题,若这6道题中,甲能正确解答其中的4道,乙能正确解答每个题目的概率均为.假设甲、乙两名学生解答每道测试题都相互独立,互不影响,现甲、乙从这6道测试题中分别随机抽取3题进行解答.

(1)求甲、乙两名学生共答对2道测试题的概率;

(2)从数学期望和方差的角度分析,应选拔哪个学生代表学校参加竞赛?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过三点.

(1)求圆的标准方程;

(2)若过点N 的直线被圆截得的弦AB的长为,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,讨论的单调性;

(2)设时,若对任意,存在使,求实数取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 在(t,10﹣t2)上有最大值,则实数t的取值范围为(
A.
B.
C.[﹣2,1)
D.(﹣2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的短轴一个端点到右焦点F的距离为2,且过点
(1)求椭圆C的方程;
(2)设M,N为椭圆C上不同的两点,A,B分别为椭圆C上的左右顶点,直线MN既不平行与坐标轴,也不过椭圆C的右焦点F,若∠AFM=∠BFN,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是(填写所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下列联表

附:

根据表中的数据,下列说法中,正确的是(

A. 没有95% 以上的把握认为“是否认可与城市的拥堵情况有关”

B. 有99% 以上的把握认为“是否认可与城市的拥堵情况有关”

C. 可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”

D. 可以在犯错误的概率不超过0.025的前提下认为“是否认可与城市的拥堵情况有关”

查看答案和解析>>

同步练习册答案