精英家教网 > 高中数学 > 题目详情
已知tan(
π
4
+α)=
1
2
,则
sin2α-cos2α
1+cos2α
=
-
5
6
-
5
6
分析:由两角和的正切公式解出tanα=-
1
3
,从而将原式化简成以tanα为单位的式子,即可求出其值.
解答:解:∵tan(
π
4
+α)=
tan
π
4
-tanα
1-tan
π
4
tanα
=
1
2

1+tanα
1-tanα
=
1
2
,解得tanα=-
1
3

因此,
sin2α-cos2α
1+cos2α
=
2sinαcosα-cos2α
2cos 2α
=tanα-
1
2
=-
5
6

故答案为:-
5
6
点评:本题给出α+
π
4
的正切,求
sin2α-cos2α
1+cos2α
的值.着重考查了两角和与差的三角函数公式与同角三角函数的基本关系等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(1)已知tan(α+
π
4
)=-3
,求
sinα(3cosα-sinα)
1+tanα
的值.
(2)如图:△ABC中,|
AC
|=2|
AB
|
,D在线段BC上,且
DC
=2
BD
,BM是中线,用向量证明AD⊥BM.(平面几何证明不得分)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+α)=2,tanβ=
1
2

(1)求tanα的值;
(2)求
sin(α+β)-2sinαcosβ
2sinαsinβ+cos(α+β)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α+
π
4
)=
1
7
,则tanα=
-
3
4
-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(α+
π
4
)=2
,则
sinα+cosα
cosα-sinα
的值=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(
π
4
+θ)=3
,则sin2θ-2cos2θ+1的值为
1
5
1
5

查看答案和解析>>

同步练习册答案