精英家教网 > 高中数学 > 题目详情

【题目】数列满足,且.

1)求

2)求数列的通项公式;

3)令,求数列的最大值与最小值.

【答案】1;(2;(3)数列的最大值为,最小值为.

【解析】

1)由题设条件,分别令可计算出的值;

2)令,由可得出,两式作差可得出,再利用等比数列的通项公式即可得出数列的通项公式;

3)先求出数列的通项公式,分两种情况讨论,利用数列的单调性即可求出数列的最大值与最小值.

1数列满足,且

时,则有,解得

时,则有,解得

时,则有,解得

2)当时,由可得出

两式相减得,且

所以,数列从第二项起成等比数列,又,所以

3

时,.

时,,此时,数列单调递减,且

时,,此时,数列单调递减,且.

,因此,数列的最大值为,最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是直角梯形,其中为棱上的点,且

1)求证:平面

2)求二面角的余弦值;

3)设为棱上的点(不与重合),且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将直线l沿x轴正方向平移3个单位长度,沿y轴正方向平移5个单位长度,得到直线l1.再将直线l1沿x轴正方向平移1个单位长度,沿y轴负方向平移2个单位长度,又与直线l重合.若直线l与直线l1关于点(23)对称,则直线l的方程是________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在实数集上的偶函数和奇函数满足

1)求的解析式;

2)求证:在区间上单调递增;并求在区间的反函数;

3)设(其中为常数),若对于恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:(a>b>0)的左、右焦点分别为F1,F2,且离心率为,M为椭圆上任意一点,当∠F1MF2=90°时,△F1MF2的面积为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点A是椭圆C上异于椭圆顶点的一点,延长直线AF1,AF2分别与椭圆交于点B,D,设直线BD的斜率为k1,直线OA的斜率为k2,求证:k1·k2等于定值.

【答案】(Ⅰ)(Ⅱ)见解析

【解析】

Ⅰ)由题意可求得,则,椭圆的方程为.

Ⅱ)设

当直线的斜率不存在或直线的斜率不存在时,.

当直线的斜率存在时,,设直线的方程为联立直线方程与椭圆方程,结合韦达定理计算可得直线的斜率为直线的斜率为.综上可得:直线的斜率之积为定值.

Ⅰ)设由题

解得,则椭圆的方程为.

Ⅱ)设,当直线的斜率不存在时,

,则,直线的方程为代入

可得 ,则,

直线的斜率为,直线的斜率为

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,设直线的方程为

则由消去可得:

,则,代入上述方程可得:

设直线的方程为,同理可得

直线的斜率为

直线的斜率为 .

所以,直线的斜率之积为定值,即.

【点睛】

(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.

(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.

型】解答
束】
21

【题目】已知函数f(x)=(x+b)(-a),(b>0),在(-1,f(-1))处的切线方程为(e-1)x+ey+e-1=0.

(Ⅰ)求a,b;

(Ⅱ)若方程f(x)=m有两个实数根x1,x2,且x1<x2,证明:x2-x1≤1+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,前项和为,且.

1)求的值;

2)证明:数列是等差数列,并写出其通项公式;

3)设),试问是否存在正整数(其中,使得成等比数列?若存在,求出所有满足条件的数对;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆上.

1)求椭圆的标准方程;

2)当点在椭圆的图像上运动时,点在曲线上运动,求曲线的轨迹方程,并指出该曲线是什么图形;

3)过椭圆上异于其顶点的任意一点作曲线的两条切线,切点分别为不在坐标轴上),若直线轴,轴上的截距分别为试问:是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知椭圆的左、右焦点分别为,点是椭圆的一个顶点,是等腰直角三角形.

1)求椭圆的方程;

2)设点是椭圆上一动点,求线段的中点的轨迹方程;

3)过点分别作直线交椭圆于两点,设两直线的斜率分别为

,探究:直线是否过定点,并说明理由.

查看答案和解析>>

同步练习册答案